Chemistry Letters 2001
43
undergo coordination towards some transition metals to give sta-
ble terminal pnictogenidene complexes.10 These reports prompted
us to examine the thermodynamic stabilization of stibinidene 3 by
the complexation with a transition metal. However, thermal reac-
tions of the stibinidene precursors 4a (at 100 °C for 20 h) and 4b
(at 120 °C for 18 h) with W(CO)5·thf in THF in a sealed tube
afforded no expected terminal stibinidene complex 6 but the cor-
responding η1-tungsten complexes 5a11 and 5b8 in 75 and 65%
yields, respectively.
This work was partially supported by the Grant-in-Aids for
COE Research on Elements Science (No. 12CE2005) from the
Ministry of Education, Science, Sports and Culture of Japan. T.
S. thanks Research Fellowships of the Japan Society for the
Promotion of Science for Young Scientists. We are grateful to
Shin-Etsu Chemical, and Tosoh Akzo Co., Ltds., for the gener-
ous gifts of chlorosilanes and alkyllithiums, respectively.
References and Notes
#
Present address: Department of Chemical and Biological Science,
Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai,
Bunkyo-ku, Tokyo 112-8681, Japan.
1
For reviews, see: a) L. Weber, Chem. Rev., 92, 1839 (1992). b) M.
Yoshifuji, in “Multiple Bonds and Low Coordination in Phosphorus
Chemistry,” ed. M. Regitz and O. J. Scherer, Georg Thieme Verlag,
Stuttgart, Germany (1990), p. 321. c) A. H. Cowley, J. E. Kilduff, J. G.
Lasch, S. K. Mehrotra, N. C. Norman, M. Pakulski, B. R. Whittlesey, J.
L. Atwood, and W. E. Hunter, Inorg. Chem., 23, 2582 (1984).
a) A. H. Cowley, J. G. Lasch, N. C. Norman, and M. Pakulski, J. Am.
Chem. Soc., 105, 5506 (1983). b) A. H. Cowley, J. G. Lasch, N. C.
Norman, M. Pakulski, and B. R. Whittlesey, J. Chem. Soc., Chem.
Commun., 1983, 881. c) K. Tsuji, Y. Fujii, S. Sasaki, and M. Yoshifuji,
Chem. Lett., 1996, 713. d) B. Twamley and P. P. Power, Chem.
Commun., 1998, 1979.
a) C. Couret, J. Escudié, Y. Madaule, H. Ranaivonjatovo, and J.-G.
Wolf, Tetrahedron Lett., 24, 2769 (1983). b) A. H. Cowley, N. C.
Norman, and M. Paulski, J. Chem. Soc., Dalton Trans., 1985, 383.
M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, and T. Higuchi, J. Am.
Chem. Soc., 103, 4587 (1981).
U. Schmidt, Angew. Chem., Int. Ed. Engl., 14, 523 (1975) and refer-
ences cited therein.
N. Tokitoh, Y. Arai, T. Sasamori, R. Okazaki, S. Nagase, H. Uekusa,
and Y. Ohashi, J. Am. Chem. Soc., 120, 433 (1998).
N. Tokitoh, Y. Arai, R. Okazaki, and S. Nagase, Science, 277, 78
(1997).
All the new products here obtained showed satisfactory spectral and
analytical data. The spectral data for 4a are shown as the representative
as follows. 4a: colorless powder, mp 123–125 °C (dec.); 1H NMR (500
MHz, CDCl3) δ 0.31 (s, 54H), 1.27 (s, 1H), 1.81 (s, 3H), 1.97 (s, 1H),
2.03 (s, 1H), 2.34–1.47 (m, 2H), 3.05–3.10 (m, 2H), 5.89 (br s, 1H),
6.26 (s, 1H), 6.40 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 0.74 (q), 1.02
(q), 21.4 (q), 23.6 (t), 28.6 (t), 29.9( q), 30.8 (d), 31.0 (d), 121.8 (d),
126.7 (d), 127.4 (d), 133.3 (s), 142.0 (s), 142.7 (s), 150.5 (s), 150.7 (s).
Anal. Calcd for C32H67SbSi6·H2O: C, 50.56; H, 9.14%. Found: C,
50.61; H, 8.72%.
Distibene 1 is not photochemically dissociated to give stibinidene 3 (a
medium pressure 400-W mercury lamp, Pyrex filter, in C6D6, at 70 ºC).
By contrast, diphosphene (Mes*P=PMes*) is known to be photo-
chemically labile to generate the corresponding phosphinidene; M.
Yoshifuji, T. Sato, and N. Inamoto, Chem. Lett., 1988, 1735.
2
3
The molecular structure of complex 5a was determined
unambiguously by X-ray crystallographic analysis (Figure 1),12
which is the first structural analysis of the compound having sti-
bolene framework. Of particular note among the structural fea-
tures of 5a is the quite small C(28)–Sb–C(31) angle [83.3(5)°],
which might promote the elimination of isoprene via thermal
retrocycloaddition to give terminal stibinidene complex 6. The
other bond lengths and angles are not significantly different from
those of reported stibine–tungsten complexes,13 except for the
large C(1)–Sb–W angle [130.2(2)°] which might be caused by
steric repulsion between the extremely bulky Tbt group and
W(CO)5 moiety.
4
5
6
7
8
9
10 a) A. H. Cowley, Acc. Chem. Res., 30, 445 (1997) and references cited
therein. b) P. B. Hitchcock, M. F. Lappert, and W.-P. Leung, J. Chem.
Soc., Chem. Commun., 1987, 1282. c) A. H. Cowley, B. Pellerin, J. L.
Atwood, and S. G. Bott, J. Am. Chem. Soc., 112, 6734 (1990). d) J. B.
Bonanno, P. T. Wolczanski, and E. B. Lobkovsky, J. Am. Chem. Soc.,
116, 11159 (1994).
1
11 Spectral data for 5a: pale yellow crystals; mp 200–205 °C (dec.); H
NMR (500 MHz, CDCl3) δ 0.05 (s, 18H), 0.11 (s, 18H), 0.12 (s, 18H),
1.22 (s, 1H), 1.28 (s, 1H), 1.34 (s, 1H), 1.79 (s, 3H), 2.57–2.76 (m, 2H),
3.51–3.56 (m, 2H), 5.77 (s, 1H), 6.35 (s, 1H), 6.48 (s, 1H); 13C NMR
(126 MHz, CDCl3) δ 0.79 (q), 1.14 (q), 1.45 (q), 20.9 (d), 29.5 (t), 30.4
(q), 33.3 (d), 33.8 (d), 34.1 (t), 122.4 (d), 124.3 (d), 126.6 (s), 127.6 (d),
In expectation of trapping the terminal stibinidene complex
6, thermolysis of complex 5a was carried out in the presence of
an excess amount of 2,3-dimethyl-1,3-butadiene (130 °C for 5 h,
toluene-d8, in a sealed tube) to give a tungsten complex 5b (58%)
together with the demetallated stibolene 4b (42%). Formation of
the diene-exchanged product 5b implies the generation of an
expected complex 6, but the formation of 4b suggests another
complicated pathway, that is, the initial elimination of W(CO)5
moiety from 5a prior to the diene-exchange reaction via interme-
diary stibinidene 3 as mentioned above. Then, a part of 4b thus
generated may undergo recombination with W(CO)5 moiety to
give 5b.
1
139.5 (s), 145.2 (s), 150.0 (s), 150.1 (s), 198.0 (s, JCW=126.2 Hz),
1
199.3 (s, JCW=161.4 Hz). IR (CHCl3) 2066, 1936 cm–1 (νCO). HRMS
(FAB) m/z Obsd 1065.1753 ([M+H]+), Calcd for C37H68O5SbSi6W:
1065.2230.
12 The intensity data for 5a were collected on a Rigaku/MSC Mercury
CCD diffractometer. Crystallographic data for 5a: C37H67O5SbSi6W,
fw = 1066.05, T = 173(2) K, triclinic, P1, a = 9.6414(6) Å, b =
14.8719(14) Å, c = 17.376(3) Å, α = 90.199(4)°, β = 93.007(4)°, γ =
97.7124(19)°, V = 2465.4(5) Å3, Z = 2, Dcalc = 1.436 g cm–3, R1 =
0.065, wR2 = 0.171
13 a) M. J. Aroney, I. E. Buys, M. S. Davies, and T. W. Hambley, J.
Chem. Soc., Dalton Trans., 1994, 2827. b) A. M. Hill, N. J. Holmes, A.
R. J. Genge, W. Levason, and M. Webster, J. Chem. Soc., Dalton
Trans., 1998, 825.
Further investigation on the chemistry of low-coordinated
species of heavier group 15 elements is currently in progress.