2 K. Undheim and J. Efskind, Tetrahedron, 2000, 56, 4857 and reference
cited therein.
3 R. K. Singh, Synthesis, 1985, 54; S. Kotha and N. Sreenivaschary,
Bioorg. Med. Chem. Lett., 1998, 8, 257; S. Kotha and E. Brahmachary,
Tetrahedron Lett., 1997, 3, 3561.
4 G. E. Keck, E. J. Enholm, J. B. Yates and M. R. Wiley, Tetrahedron,
1984, 41, 4079.
5 J. M. Trouchet and B. Gentile, Carbohydr. Res., 197, 44, 23.
6 M. K. Gurjar, B. V. N. B. S. Sharma and B. V. Rao, J. Carbohydr. Chem.,
1998, 17, 1107.
Scheme 2
7 R. H. Grubbs and S. Chang, Tetrahedron, 1998, 54, 4413; R. H. Grubbs,
S. J. Miller and G. C. Fu, Acc. Chem. Res., 1995, 28, 446.
8 Compound 6: 1H NMR (200 MHz) data: d 1.08 (s, 9 H, tBu), 1.29, 1.54
(2s, 6 H, 2 3 Me, 1.87–2.54 (m, 4H, 2 3 CH2-CHN), 3.82 (m, 2 H, H-5
and H-5A), 4.03 (t, 1 H, J = 6.4 Hz, H-4), 4.25 (d, 1 H, J = 3.4 Hz, H-2),
5.0 (m, 4 H, 2 3 CH2N), 5.70 (d, 1 H, J = 3.4 Hz, H-1), 5.80 (m, 2 H, 2
3 CHN), 7.35–7.77 (m, 10 H, 2 3 Ph); 13C NMR (50.32 MHz) data: d
19.3, 26.5, 27.0, 35.6, 36.5, 50.0, 62.9, 84.7, 85.6, 104.2, 111.0, 117.7,
127.8, 129.8, 133.3, 133.5, 134.5, 135.0, 135.7.
spectrum of 6, the characteristic olefinic proton signals of two
allylic groups appeared in in the region of 5.0 and 5.7 ppm while
the allylic methylene protons were located in the region of
2.2 ppm. In addition, the assigned structure of 6 was further
suggested by the 13C NMR, MS and elemental analysis. Table 1
provides other examples in this series which substantiates the
versatility of this methodology. Only entry 5 describes an
aliphatic example.
1
Compound 6a: H NMR (200 MHz) data: d 1.31, 1.53 (2s, 6 H, 2 3
Me), 1.91–2.50 (m, 4 H, 2 3 CH2-CHN), 3.35 (s, 3 H, OMe), 3.52 (m, 2
H, H-5 and H-5A), 4.06 (dd, 1H, J = 3.9, 7.3 Hz, H-4), 4.26 (d, 1 H, J =
3.9 Hz, H-2), 5.06 (m, 4 H, 2 3 CH2N), 5.70 (d, 1 H, J = 3.9, H-1), 5.84
(m, 2 H, 2 3 CHN); 13C NMR (75.47 MHz) data: d 26.3, 26.8, 35.3, 35.8,
49.8, 59.2, 71.7, 83.2, 85.3, 104.2, 112.2, 118.0, 134.0, 134.4.
Compound 6b: 1H NMR (500 MHz) data: d 1.58 (m, 10 H, 5 3 CH2),
2.05- 2.4 (m, 4 H, 2 3 CH2-CHN), 3.31 (s, 3 H, OMe), 3.9 (d, 1 H, J =
4.4 Hz, H-3), 3.95 (dd, 1 H, J = 5.9, 8.3 Hz, H-4), 4.08 (m, 2 H, H-6 and
H-6A), 4.31 (m, 1 H, H-5), 4.49, 4.74 (2d, 2 H, J = 11.0 Hz, CH2Ph), 4.71
(s, 1 H, H-1), 5.06 (m, 4 H, 2 3 CH2N), 5.77 (m, 2 H, 2 3 CHN); 13C NMR
(125.75 MHz) data: d 23.9, 24.1, 25.2, 35.0, 35.3, 36.5, 52.6, 55.9, 67.2,
73.2, 74.2, 80.4, 84.4, 109.2, 109.6, 117.5, 117.7, 127.6, 128.0, 128.3,
135.0, 138.5.
The ring closing metathesis reaction of 6c with Grubbs
catalyst in CH2Cl2 at rt gave the spiro-ring compound 7 in 80%
yield.7 The structure of 7 was established based on H, 13C
1
NMR and MS (Scheme 2).8
In summary this communication describes a mild and
efficient methodology to construct gem-diallylic substituted
carbohydrate synthons as precursors for spiro-cyclic systems.
The preparation of unsymmetrical gem-diallyl substituents at
the quaternary carbon will be the next endeavour of this
methodology.
Authors (S. V. R. and S. K.) are grateful to CSIR, New Delhi
for the award of research fellowships.
Compound 6c: 1H NMR (200 MHz) data: d 1.27, 1.33, 1.45, 1.50 (4s,
12 H, 4 3 Me), 2.15–2.45 (m, 4 H, 2 3 CH2-CHN), 3.72 (m, 1 H, H-4),
3.78 (m, 1 H, H-5), 4.09 (m, 2 H, H-6 and H-6A), 4.24 (d, 1 H, J = 3.4 Hz,
H-2), 5.03 (m, 4 H, 2 3 CH2N), 5.57 (d, 1 H, J = 3.4 Hz, H-1), 5.9 (m,
2 H, 2 3 CHN); 13C NMR (50.32 MHz) data: d 25.5, 26.4, 26.8, 27.1,
36.1, 37.0, 50.6, 69.0, 73.5, 85.2, 86.0, 104.4, 109.5, 111.3, 117.6, 134.8,
135.5.
Notes and references
† Typical experimental procedure: A solution of the cyclopropylmethyl
bromide derivative 5a–e (0.4 mmol), allyltri-n-butylstannane (0.8 mmol)
and AIBN (5 mol %) in dry benzene (3 mL) was degassed by bubbling argon
for 30 min. The reaction mixture was heated under reflux for 12 h and
concentrated in vacuo. A KF solution (5 mL) and diethyl ether (10 mL) were
added, stirred for 1 h, filtered and washed with ether. The ether layer was
separated, dried over anhydrous Na2SO4 and concentrated. The crude
product was purified on silica gel using ethyl acetate–hexane to afford the
desired diallyl product.
Compound 6d: 1H NMR (200 MHz) data: d 1.30 (m, 8 H, 4 3 CH2),
1.92–2.30 (m, 4 H, CH2-CHN), 2.94 (dd, 1 H, J = 3.4, 7.8 Hz, CH), 3.27
(s, 3 H, OMe), 4.94 (m, 4 H, 2 3 CH2N), 5.77 (m, 2 H, 2 3 CHN); 13
C
NMR (50.32 MHz) data: d 21.0, 22.9, 24.1, 31.4, 36.8, 39.8, 40.9, 56.3,
82.3, 117.0, 117.2, 135.1.
1
Compound 6e: H NMR (200 MHz) data: d 1.76 (m, 1 H, methine),
2.10 (m, 4 H, 2 3 CH2-CHN), 3.33 (dd, 2 H, J = 5.9, 11.2 Hz, CH2O),
4.46 (d, 2 H, J = 11.7 Hz, CH2Ph), 5.00 (m, 4 H, 2 3 CH2N), 5.73 (m,
2 H, 2 3 CHN), 7.26 (m, 5 H, Ph); 13C NMR (50.32 MHz) data: d 35.4,
38.3, 72.4, 73.1, 116.3, 127.5, 128.3, 136.7.
1 M. Sannigrahi, Tetrahedron, 1999, 55, 9007; A. P. Krapcho, Synthesis,
1974, 383; E. J. Corey and A. Guzman-Perez, Angew. Chem., Int. Ed.
Engl., 1998, 37, 389.
242
Chem. Commun., 2001, 241–242