Communications
Organometallics, Vol. 20, No. 4, 2001 605
Sch em e 2a
F igu r e 1. ORTEP diagram of 4. The metal-bonded hy-
drogen is not exactly located; the other hydrogen atoms are
omitted for clarity. Selected bond distances (Å) and angles
(deg): Rh-P1, 2.3746(14); Rh-P2, 2.3344(13); Rh-Cl,
2.4687(13); Rh-C31, 1.967(5); P1-Rh-P2, 160.18(5); P1-
Rh-Cl, 98.01(5); P1-Rh-C31, 96.89(13); P2-Rh-Cl, 99.74-
(5); P2-Rh-C31, 87.54(13); Cl-Rh-C31, 103.40(14); Rh-
P2-C28, 110.62(15); P2-C28-C29, 113.8(3); C28-C29-
C30, 109.0(4); C29-C30-C31, 121.1(4); C30-C31-Rh,
126.8(4).
a
L ) tBu2PCH2CH2C6H5 (3).
as starting material for the preparation of 4. If 5 is
treated with 2 instead of 4 equiv of 3, the intermediate
[RhCl(C2H4)(3)]2 (6) is detected by 1H and 31P NMR
spectroscopy,6 which reacts with excess 3 to give 4.
Compound 6 is accessible in analytically pure form from
4 and 5 in the molar ratio of 2:1 in pentane and isolated
as a yellow solid in 86% yield.
membered chelate ring. We note that besides 2 also the
dimeric bis(ethene)rhodium(I) derivative 5 can be used
If a suspension of 4 in pentane is stirred at room
temperature under an atmosphere of carbon monoxide,
a gradual change of color occurs and after ca. 30 s a
light yellow solid precipitates. The spectroscopic data
of this compound indicate that instead of the anticipated
six-coordinate 1:1 adduct of 4 and CO the square-planar
carbonyl complex 7 is formed (Scheme 2). The practically
quantitative yield of 7 from the rhodium(III) precursor
4 illustrates that the insertion of the metal into one of
the ring C-H bonds of the phosphine 3 is completely
reversible. With regard to the structure of 7, the
noteworthy aspect is that in solution at low temperature
at least three rotamers can be observed, the existence
of which is probably due to the steric bulk of the tert-
butyl groups.10
(6) Selected spectroscopic data for 4 and 6-10 are as follows. 4: 1H
NMR (C6D6, 600 MHz) δ -18.11 (ddd, J (RhH) ) 22.9, J (PH) ) 15.9
and 9.5 Hz, 1H, RhH); 13C NMR (C6D6, 150.9 MHz) δ 146.9 (ddd,
J (RhC) ) 34.2, J (PC) ) 12.0 and 5.8 Hz, RhC), 144.3 (d, J (PC) ) 8.6
Hz, RhCCCH2), 42.2 (dd, J (RhC) ) 5.7, J (PC) ) 5.2 Hz, RhCCCH2),
19.1 (d, J (PC) ) 29.3 Hz, PCH2); 31P NMR (C6D6, 162.0 MHz) δ 65.7
(dd, J (RhP) ) 120.4, J (PP) ) 366.2 Hz, tBu2P of chelate ring), 43.0
(dd, J (RhP) ) 110.2, J (PP) ) 366.2 Hz, tBu2P of monodentate ligand).
6: 1H NMR (C6D6, 200 MHz) δ 3.56, 3.06 (both m, 4H each, C2H4),
2.84 (m, 4H, PCH2CH2), 1.56 (m, 4H, PCH2); 13C NMR (C6D6, 50.3 MHz)
δ 44.7 (d, J (RhC) ) 14.9 Hz, C2H4), 32.9 (s, PCH2CH2), 22.4 (d,
J (PC) ) 15.6 Hz, PCH2); 31P NMR (C6D6, 81.0 MHz) δ 65.8 (d,
J (RhP) ) 185.7 Hz). 7: IR (KBr) ν(CO) 1937 cm-1 31P NMR (toluene-
;
d8, 162.0 MHz, 223 K) δ 58.9 (dd, J (RhP) ) 118.7, J (PP) ) 312.0 Hz,
tBu2P of rotamer I), 58.1 (d, J (RhP) ) 120.4 Hz, tBu2P of rotamer II),
47.4 (dd, J (RhP) ) 123.8, J (PP) ) 312.0 Hz, tBu2P of rotamer I), 46.6
(d, J (RhP) ) 120.4 Hz, tBu2P of rotamer III). 8: 1H NMR (C6D6, 300
MHz, 313 K) δ 3.23 (m, 4H, PCH2CH2), 2.53 (m, 4H, PCH2), 1.36 (dt,
J (PH) ) 3.2, J (RhH) ) 1.1 Hz, RhdCdCH); 13C NMR (C6D6, 75.4 MHz,
313 K) δ 290.6 (m, RhdC), 116.2 (m, RhdCdC), 33.3 (s, PCH2CH2),
23.1 (vt, N ) 15.3 Hz, PCH2); 31P NMR (C6D6, 81.0 MHz, 308 K) δ
The reaction of 4 with phenylacetylene proceeds
similarly to that with CO. Treatment of a solution of 4
with PhCtCH in toluene at room temperature affords,
after chromatographic workup (Al2O3, neutral, activity
grade III, hexane) and recrystallization of the oily
residue from pentane, a blue-violet solid whose elemen-
tal analysis corresponds to 8 (Scheme 2). Typical
spectroscopic data of 8 are the signal for the RhdCd
52.5 (d, J (RhP) ) 137.3 Hz). 9: IR (KBr) ν(RhH) 2138 cm-1 1H NMR
;
(C6D6, 400 MHz) δ 3.25 (m, 4H, PCH2CH2), 2.31 (m, 4H, PCH2), -22.63
(dt, J (RhH) ) 26.3, J (PH) ) 14.7 Hz, 2H, RhH2); 13C NMR (C6D6, 100.6
MHz) δ 34.4 (s, PCH2CH2), 26.2 (vt, N ) 15.3 Hz, PCH2); 31P NMR
(C6D6, 162.0 MHz) δ 65.6 (d, J (RhP) ) 115.3 Hz). 10: 1H NMR (acetone-
d6, 200 MHz) δ 3.20, 2.71, 2.53, 2.33 (all m, 2H each, PCH2 and
PCH2CH2); 13C NMR (acetone-d6, 50.3 MHz) δ 142.5 (d, J (PC) ) 9.3
Hz, ipso-C of C6H5 uncoord), 111.5 (ddd, J (RhC) ) 3.7, J (PC) ) 9.2
and 4.7 Hz, ipso-C of C6H5 coord), 40.8 (dd, J (PC) ) 25.0 and 2.0 Hz,
PCH2CH2-η6-C6H5), 30.6 (s, PCH2CH2-η6-C6H5); 31P NMR (acetone-d6,
81.0 MHz) δ 81.5 (dd, J (RhP) ) 211.1, J (PP) ) 15.3 Hz, tBu2P of chelate
ligand), 68.6 (dd, J (RhP) ) 203.4, J (PP) ) 15.3 Hz, tBu2P of mono-
dentate ligand), -142.7 (sept, J (PF) ) 707.0 Hz, PF6-).
1
CH proton at δ 1.36 in the H NMR and two low-field
resonances for the vinylidene carbon atoms at δ 290.6
and 116.2 in the 13C NMR spectrum.6 Monitoring the
reaction of 4 with PhCtCH in toluene-d8 in an NMR
tube suggests that an alkynylhydridorhodium(III) spe-
cies is formed as an intermediate, which rearranges
smoothly to the final product.
(7) Crystal data for 4: crystals from acetone at room temperature;
crystal size 0.20 × 0.20 × 0.10 mm; monoclinic, space group P21/n (No.
14), Z ) 4; a ) 8.8783(18) Å, b ) 17.190(3) Å, c ) 21.126(4) Å, â )
98.92(3)°, V ) 3185.2(11) Å3, dcalcd ) 1.333 g cm-3; 2θ(max) ) 52.74°
(Mo KR, λ ) 0.710 73 Å, graphite monochromator, ψ scan, T ) 173(2)
K; 32 867 reflections scanned, 6512 unique, 4075 observed (I > 2σ(I)),
direct methods (SHELXS-97), 340 parameters, reflex/parameter ratio
19.15; R1 ) 0.0450, wR2 ) 0.1026; residual electron density +0.897/-
The C-H metalation of 3 leading to 4 is also reversed
upon stirring a suspension of 4 in pentane at room
(9) Rybtchinski, B.; Vigalok, A.; Ben-David, Y.; Milstein, D. J . Am.
Chem. Soc. 1996, 118, 12406-12415.
(10) Bushweller, C. H.; Rithner, C. D.; Butcher, D. J . Inorg. Chem.
1984, 23, 1967-1970.
1.259 e Å-3
.
(8) Nemeh, S.; J ensen, C.; Binamira-Soriaga, E.; Kaska, W. C.
Organometallics 1983, 2, 1442-1447.