March 2006
379
(TBS) chloride to give the TBS ether II. The alkylation of II with Grignard
reagent, followed by oxidation of allylic alcohol functionality with MnO2
gave the enone IV. Deprotection of compound IV with tetrabutylammonium
fluoride (TBAF) in THF gave the enones 1,24) 3,25) 4,25) 626) and 7,27) which
were further reduced to the ketones 2,28) 525) and 829) by catalytic hydrogena-
tion. Reaction progresses were checked by TLC and the structures of final
products were confirmed by the analyses of NMR spectra.
5) Mohamad H., Lajis N. H., Abas F., Ali A. M., Sukari M. A., Kikuzaki
H., Nakatani N., J. Nat. Prod., 68, 285—288 (2005).
6) Lee W. S., Kim J. R., Im K. R., Cho K. H., Sok D. E., Jeong T. S.,
Planta Med., 71, 295—299 (2005).
7) Hikino H., Kiso Y., Kato N., Hamada Y., Shioiri T., Aiyama R.,
Itokawa H., Kiuchi F., Sankawa U., J. Ethnopharmacol., 14, 31—39
(1985).
Measurements of NO in LPS-Induced Murine Macrophages Murine
macrophage cell line, RAW 264.7 cells, in 10% fetal bovine serum (FBS)-
DMEM, were plated in 48-well plates (1.5ꢃ105 cells/ml), and then incu-
bated for 24 h. The cells were replaced with fresh media containing 1% FBS,
8) Takahashi M., Fuchino H., Hiroyuki S., Setsuko S., Satake M., Phy-
totheraphy Res., 18, 573—578 (2004).
9) Alves L. V., do Canto-Cavalheiro M. M., Cysne-Finkelstein L., Leon
L., Biol. Pharm. Bull., 26, 453—456 (2003).
and then incubated in the presence or absence of test samples with 1 mg/ml 10) Rao C. V., Rivenson A., Simi B., Reddy B. S., Cancer Res., 55, 259—
of LPS for 20 h. NO production in each well was assessed by measuring the 266 (1995).
accumulation of nitrite in culture supernatant. Samples (100 ml) of media 11) Huang M.-T., Ma W., Lu Y.-P., Chang R. L., Fisher C., Manchand P. S.,
were incubated with Griess reagent (150 ml)30) at room temperature for
10 min in 96 well microplate. Absorbance at 570 nm was read using an
Newmark H. L., Conney A. H., Carcinogenesis, 16, 2493—2497
(1995).
ELISA plate reader. A standard calibration curve was prepared using sodium 12) Huang M.-T., Lysz T., Ferraro T., Abidi T. F., Laskin J. D., Conney A.
nitrite as standard. Dose–response curves were prepared, and the results typ- H., Cancer Res., 51, 813—819 (1991).
ically expressed as the IC50 values. IC50 represents the concentration re- 13) Gafner S., Lee S. K., Cuendet M., Barthelemy S., Vergnes L.,
quired for 50% inhibition of NO production in LPS-activated RAW 264.7
cells. Percentage inhibition of NO production was calculated as followed
equation; 100ꢃ[ODLPSꢄODsample]/[ODLPSꢄODmedia].
Labidalle S., Mehta R. G., Boone C. W., Pezzuto J. M.,
Phytochemistry, 65, 2849—2859 (2004).
14) Chun K.-S., Park K.-K., Lee J., Kang M., Surh Y.-J., Oncol. Res., 13,
37—45 (2002).
Western Blot Analysis of iNOS Protein Expression RAW 264.7 cells
(1.6ꢃ106 cells/60 mm dish) were stimulated with LPS (1 mg/ml) in the pres- 15) Chun K.-S., Kang J.-Y., Kim O. H., Surh Y.-J., J. Environ. Pathol. Toxi-
ence or absence of test compounds. After incubation for 20 h, the cells were
col. Oncol., 21, 131—139 (2002).
washed and lyzed with lysis buffer. Sixty mg protein of cell lysates was ap- 16) Ohishi K., Aiyama R., Hatano H., Yoshida Y., Wada Y., Yokoi W.,
plied on 8% SDS-polyacrylamide gels and transferred to PVDF membrane
by standard method. The membrane was probed with antibody for anti-
Sawada H., Watanave T., Yokokura T., Chem. Pharm. Bull., 49, 830—
839 (2001).
mouse iNOS (Transduction Laboratories, Lexington, KY, U.S.A.) and anti- 17) Shirota S., Miyazaki K., Aiyama R., Ichioka M., Yokokura T., Biol.
b-actin (Sigma, St. Louis, MO, U.S.A.). The Western blot was visualized Pharm. Bull., 17, 266—269 (1994).
using an enhanced chemiluminescence (ECL) detection kit (Amersham Bio- 18) Forstermann U., Schmidt H. H., Pollock J. S., Sheng H., Mitchell J. A.,
science, Piscataway, NJ, U.S.A.) according to the manufacturer’s instruction.
Warner T. D., Nakane M., Murad F., Biochem. Pharmacol., 42, 1849—
Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Analy-
1857 (1991).
sis of iNOS mRNA Expression RAW 264.7 cells (1.8ꢃ106 cells/60 mm 19) Moncada S., Palmer R. M., Higgs E. A., Pharmacol. Rev., 43, 109—
dish) were pre-treated with test compounds for 30 min and stimulated with
142 (1991).
LPS (1 mg/ml) for 6 h. After washing twice with PBS, total RNA was iso- 20) Nathan C., Xie Q. W., J. Biol. Chem., 269, 13725—13728 (1994).
lated from cell pellet, using an RNA isolation reagent (Trizol, Invitrogen, 21) Cook H. T., Cattell V., Clin. Sci., 91, 375—384 (1996).
Carlsbad, CA, U.S.A.). Two microgram of RNA was reverse transcribed into 22) Thiemermann C., Szabo C., Mitchell J. A., Vane J. R., Proc. Natl.
cDNA using reverse transcriptase and random hexamer. The PCR samples,
Acad. Sci. U.S.A., 90, 267—271 (1993).
contained in the reaction mixture, were comprised of mixture buffer, dNTP, 23) Halliwell B., Lancet, 344, 721—724 (1994).
Taq DNA polymerase (Promega, Madison, WI, U.S.A.) and primers (sense 24) Itokawa H., Ajyma R., Ikuta A., Phytochemistry, 21, 241—243 (1982).
and antisense). The sense and antisense primers for iNOS were 5ꢅ-ATGTC- 25) 1-(4-Hydroxy-3-methoxyphenyl)-6-phenylhex-1-en-3-one (>B>3): 1H-
CGAAGCAAACATCAC-3ꢅ and 5ꢅ-TAATGTCCAGGAAGTAGGTG-3ꢅ, re-
spectively. The sense and antisense primers for b-actin were 5ꢅ-TGTGATG-
GTGGGAATGGGTCAG-3ꢅ and 5ꢅ-TTTGATGTCACGCACGATTTCC-3ꢅ,
respectively. The PCR amplification was performed under following condi-
tions; 25 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s
and extension at 72 °C for 30 s, using thermal cycler (Gene Amp PCR sys-
tem 2400: Applied Biosystems, Foster City, CA, U.S.A.). The amplified
PCR products were separated on 1% agarose gel.
NMR (300 MHz, CDCl3) d 7.36 (1H, d, Jꢀ16.1), d 7.24—7.10 (5H,
m), d 7.00 (1H, dd, Jꢀ8.1, 1.8), d 6.96 (1H, d, Jꢀ1.8), d 6.84 (1H, d,
Jꢀ8.1), d 5.82 (1H, s), d 3.86 (3H, s), d 2.64—2.56 (4H, m), d
2.00—1.90 (2H, m).
(E)-1-(4-Hydroxy-3-methoxyphenyl)-5-phenylpent-1-en-3-one
(4):
1H-NMR (300 MHz, CDCl3) d 7.48 (1H, d, Jꢀ16.1), d 7.32—7.18
(5H, m), d 7.07 (1H, dd, Jꢀ8.2, 1.9), d 7.03 (1H, d, Jꢀ1.9), d 6.92
(1H, d, Jꢀ8.2), d 6.59 (1H, d, Jꢀ16.1), d 5.90 (1H, s), d 3.93 (3H, s),
d 3.00 (4H, m).
Acknowledgements This work was supported by the Korea Research
Foundation grant funded by the Korean Government (Grant No. R06-2002-
015-01001-0) and grant of the Research Center for Women’s Diseases from
the Korea Science and Engineering Foundation (KOSEF).
1-(4-Hydroxy-3-methoxyphenyl)-5-phenylpentan-3-one (5): 1H-NMR
(300 MHz, CDCl3) d 7.20—d 7.06 (5H, m), d 6.74 (1H, d, Jꢀ7.9), d
6.59 (1H, d, Jꢀ1.9), d 6.56 (1H, dd, Jꢀ7.9, 1.9), d 5.41 (1H, s), d
3.78 (3H, s), d 2.81 (2H, t, Jꢀ7.4), d 2.74 (2H, t, Jꢀ7.1), d 2.66—
2.58 (4H, m).
References and Notes
1) Surh Y.-J., Mutat. Res., 428, 303—325 (1999).
26) Arty I. S., Timmerman H., Samhoedi M., Sastrohamidjojo, Sugiyanto,
van der Goot H., Eur. J. Med. Chem., 35, 449—457 (2000).
2) Ishida J., Kozuka M., Tokuda H., Nishino H., Nagumo S., Lee K. H., 27) Elias G., Rao M. N. A., Eur. J. Med. Chem., 23, 379—380 (1988).
Nagai M., Bioorg. Med. Chem., 10, 3361—3365 (2002). 28) Itokawa H., Ajyma R., Ikuta A., Phytochemistry, 20, 769—771 (1981).
3) Jolad S. D., Lantz R. C., Solyom A. M., Chen G. J., Bates R. B., Tim- 29) Sanz J. F., Barbera O., Marco J. A., Phytochemistry, 28, 2163—2167
mermann B. N., Phytochemistry, 65, 1973—1954 (2004). (1989).
4) Tao J., Morikawa T., Toguchida I., Ando S., Matsuda H., Yoshikawa 30) Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S.,
M., Bioorg. Med. Chem., 10, 4005—4012 (2002). Tannenbaum S. R., Anal. Biochem., 126, 131—138 (1982).