Page 5 of 7
ACS Catalysis
Cyclization/Carboxylation of Unactivated Primary and Secondary
Photoredox/Palladium Dual Catalysis. Chem. Sci., 2019, DOI:
10.1039/C9SC01336A. However, the ipso-carboxylation of -
trifluoromethyl alkenes and gem-difluorodienes with CO2 has never
been reported.
Alkyl Halides with CO2. J. Am. Chem. Soc. 2015, 137, 6476–6479. (h)
Moragas, T.; Gaydou, M.; Martin, R. Nickel-Catalyzed Carboxylation
of Benzylic C-N Bonds with CO2. Angew. Chem., Int. Ed. 2016, 55,
5053–5057. (i) Börjesson, M.; Moragas, T.; Martin, R. Ni-Catalyzed
Carboxylation of Unactivated Alkyl Chlorides with CO2. J. Am. Chem.
Soc. 2016, 138, 7504–7507. (j) Rebih, F.; Andreini, M.; Moncomble,
A.; Harrison-Marchand, A.; Maddaluno, J.; Durandetti, M. Direct
Carboxylation of Aryl Tosylates by CO2 Catalyzed by In situ-
Generated Ni0. Chem. - Eur. J. 2016, 22, 3758–3763. (k) Juliá-
Hernández, F.; Moragas, T.; Cornella, J.; Martin, R. Remote
Carboxylation of Halogenated Aliphatic Hydrocarbons with Carbon
Dioxide. Nature 2017, 545, 84–88. (l) Chen, Y.-G.; Shuai, B.; Ma, C.;
Zhang, X.-J.; Fang, P.; Mei, T.-S. Regioselective Ni-Catalyzed
Carboxylation of Allylic and Propargylic Alcohols with Carbon
Dioxide. Org. Lett. 2017, 19, 2969–2972. (m) van Gemmeren, M.;
Börjesson, M.; Tortajada, A.; Sun, S.-Z.; Okura, K.; Martin, R.
Switchable Site-Selective Catalytic Carboxylation of Allylic Alcohols
with CO2. Angew. Chem., Int. Ed. 2017, 56, 6558–6562. (n) Meng,
Q.-Y.; Wang, S.; König, B. Carboxylation of Aromatic and Aliphatic
Bromides and Triflates with CO2 by Dual Visible-Light–Nickel
Catalysis. Angew. Chem., Int. Ed. 2017, 56, 13426–13430.
1
2
3
4
5
6
7
8
(8) (a) Luo, Y.-R. Handbook of Bond Dissociation Energies in
Organic
Compounds;
Science
Press,
2005.
(b)
(9) (a) Liu, W.; Zuo, J.; Li, A.; Bi, C. Chemical Structure-Biological
Activity Relationships of -Substituted Cinnamamides. J. Beij. Med.
Coll, 1984, 16, 62–65. (b) Rousée, K.; Bouillon, J.-P.; Couve-
Bonnaire, S.; Pannecoucke, X. Stereospecific Synthesis of Tri- and
Tetrasubstituted α-Fluoroacrylates by Mizoroki-Heck Reaction. Org.
Lett. 2016, 18, 540–543 and references therein. (c) Kaneko, T.; Clark,
R.; Ohi, N.; Ozaki, F.; Kawahara, T.; Kamada, A.; Okano, K.;
Yokohama, H.; Muramoto, K.; Arai, T.; Ohkuro, M.; Takenaka, O.;
Sonoda, J. Preparation of Pyrazinobenzothiazine Derivatives and
Analogs for the Treatment of Inflammation and Autoimmune
Diseases [P]. WO:9806720, 1998-02-19. (d) Balestra, M.; Mullen, G.;
Phillips, E.; Schmiesing, R. Preparation of Novel Quinuclidine
Acrylamides for the Treatment or Prophylaxis of Psychotic Disorders
and Intellectual Impairment Disorders [P]. WO:200136417, 2001-05-
25.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) For other transition metal catalysis, see: (a) Correa, A.; Martin, R.
Palladium-Catalyzed Direct Carboxylation of Aryl Bromides with
Carbon Dioxide. J. Am. Chem. Soc. 2009, 131, 15974–15975. (b)
Tran-Vu, H.; Daugulis, O. Copper-Catalyzed Carboxylation of Aryl
Iodides with Carbon Dioxide. ACS Catal. 2013, 3, 2417–2420. (c)
Nogi, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Cobalt-Catalyzed
Carboxylation of Propargyl Acetates with Carbon Dioxide. Chem.
Commun. 2014, 50, 13052–13055. (d) Zhang, S.; Chen, W.-Q.; Yu,
A.; He, L.-N. Palladium-Catalyzed Carboxylation of Benzyl
Chlorides with Atmospheric Carbon Dioxide in Combination with
Manganese/Magnesium Chloride. ChemCatChem 2015, 7, 3972–3977.
(e) Mita, T.; Higuchi, Y.; Sato, Y. Highly Regioselective Palladium-
Catalyzed Carboxylation of Allylic Alcohols with CO2. Chem. - Eur.
J. 2015, 21, 16391–16394. (f) Shimomaki, K.; Murata, K.; Martin, R.;
Iwasawa, N. Visible-Light-Driven Carboxylation of Aryl Halides by
the Combined Use of Palladium and Photoredox Catalysts. J. Am.
Chem. Soc. 2017, 139, 9467–9470. (g) Jiao, K.-J.; Li, Z.-M.; Xu, X.-
T.; Zhang, L.-P.; Li, Y.-Q.; Zhang, K.; Mei, T.-S. Palladium-
Catalyzed Reductive Electrocarboxylation of Allyl Esters with
Carbon Dioxide. Org. Chem. Front. 2018, 5, 2244–2248.
(6) For an elegant review, see: (a) Correa, A.; Martin, R. Metal-
Catalyzed Carboxylation of Organometallic Reagents with Carbon
Dioxide. Angew. Chem. Int. Ed. 2009, 48, 6201–6204. For selected
examples, see: (b) Shi, M.; Nicholas, K. M. Palladium-Catalyzed
Carboxylation of Allyl Stannanes. J. Am. Chem. Soc. 1997, 119,
5057–5058. (c) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N.
Rhodium(I)-Catalyzed Carboxylation of Aryl- and Alkenylboronic
Esters with CO2. J. Am. Chem. Soc. 2006, 128, 8706–8707. (d) Ochiai,
H.; Jang, M.; Hirano, K.; Yorimitsu, H.; Oshima, K. Nickel-
Catalyzed Carboxylation of Organozinc Reagents with CO2. Org. Lett.
2008, 10, 2681–2683. (e) Yeung, C. S.; Dong, V. M. Beyond Aresta’s
Complex: Ni- and Pd-Catalyzed Organozinc Coupling with CO2. J.
Am. Chem. Soc. 2008, 130, 7826–7827. (f) Ohishi, T.; Nishiura, M.;
Hou, Z. Carboxylation of Organoboronic Esters Catalyzed by N-
Heterocyclic Carbene Copper(I) Complexes. Angew. Chem. Int. Ed.
2008, 47, 5792–5795. (g) Duong, H. A.; Huleatt, P. B.; Tan, Q. W.;
Shuying, E. L. Regioselective Copper-Catalyzed Carboxylation of
Allylboronates with Carbon Dioxide. Org. Lett. 2013, 15, 4034–4037.
(h) Makida, Y.; Marelli, E.; Slawin, A. M. Z.; Nolan, S. P. Nickel-
Catalysed Carboxylation of Organoboronates. Chem. Commun. 2014,
50, 8010–8013.
(10) (a) Welch, J. T.; Herbert, R. W. The Stereoselective Construction
of (Z)-3-Aryl-2-fluoroalkenoates. J. Org. Chem. 1990, 55, 4782–4784.
(b) Michida, M.; Mukaiyama, T. A Convenient Method for the
Synthesis of (Z)-α-Fluoroacrylates: Lewis Base-Catalyzed Carbonyl
Fluoroolefination
Using
Fluoro(trimethylsilyl)ketene
Ethyl
Trimethylsilyl Acetal. Chem. Lett. 2008, 37, 890–891. (c) Rousée, K.;
Schneider, C.; Couve-Bonnaire, S.; Pannecoucke, X.; Levacher, V.;
Hoarau, C. Pd- and Cu-Catalyzed Stereo- and Regiocontrolled
Decarboxylative/C–H Fluoroalkenylation of Heteroarenes. Chem. -
Eur. J. 2014, 20, 15000–15004. (d) Bouazzaoui, O.; Rousée, K.;
Mulengi, J. K.; Bouillon, J.-P.; Couve-Bonnaire, S. Synthesis of α-
Fluorinated Acrylates by a Palladium-Catalyzed Decarboxylative
Olefination Reaction. Eur. J. Org. Chem. 2018, 3705–3715 and
references therein.
(11) (a) Amii, H.; Uneyama, K. C–F Bond Activation in Organic
Synthesis. Chem. Rev. 2009, 109, 2119–2183. (b) Shen, Q.; Huang, Y.-
G.; Liu, C.; Xiao, J.-C.; Chen, Q.-Y.; Guo, Y. Review of Recent
Advances in C–F Bond Activation of Aliphatic Fluorides. J. Fluor.
Chem. 2015, 179, 14–22. (c) Ahrens, T.; Kohlmann, J.; Ahrens, M.;
Braun, T. Functionalization of Fluorinated Molecules by Transition-
Metal-Mediated C−F Bond Activation to Access Fluorinated Building
Blocks. Chem. Rev. 2015, 115, 931–972. (d) Chen, W.; Bakewell, C.;
Crimmin, M. R. Functionalisation of Carbon–Fluorine Bonds with
Main Group Reagents. Synthesis 2017, 49, 810–821. (e) Jaroschik, F.
Picking One out of Three: Selective Single C-F Activation in
Trifluoromethyl Groups. Chem. - Eur. J. 2018, 24, 14572–14582. (f)
Hamel, J.-D.; Paquin, J.-F. Activation of C–F Bonds α to C–C
Multiple Bonds. Chem. Commun. 2018, 54, 10224–10239. (g) Fujita,
T.; Fuchibe, K.; Ichikawa, J. Transition-Metal-Mediated and -
Catalyzed C–F Bond Activation by Fluorine Elimination. Angew.
Chem., Int. Ed. 2019, 58, 390–402.
(12) For selected examples of C−F functionalization in
polyfluoroarenes, see: (a) Guo, W.-H.; Min, Q.-Q.; Gu, J.-W.; Zhang,
X. Rhodium-Catalyzed ortho-Selective C-F Bond Borylation of
Polyfluoroarenes with Bpin-Bpin. Angew. Chem., Int. Ed. 2015, 54,
9075–9078. (b) Senaweera, S.; Weaver, J. D. Dual C−F, C−H
Functionalization via Photocatalysis: Access to Multifluorinated
Biaryls. J. Am. Chem. Soc. 2016, 138, 2520–2523. (c) Kikushima, K.;
Grellier, M.; Ohashi, M.; Ogoshi, S. Polyfluoroarenes by Concerted
Nucleophilic Aromatic Substitution with a Hydrosilicate. Angew.
Chem., Int. Ed. 2017, 56, 16191–16196. (d) Tian, Y.-M.; Guo, X.-N.;
Kuntze-Fechner, M. W.; Krummenacher, I.; Braunschweig, H.;
Radius, U.; Steffen, A.; Marder, T. B. Selective Photocatalytic C−F
Borylation of Polyfluoroarenes by Rh/Ni Dual Catalysis Providing
Valuable Fluorinated Arylboronate Esters. J. Am. Chem. Soc. 2018,
140, 17612–17623.
(7) During the preparation of this paper, Feng and co-workers
reported an elegant carboxylation of C−F bond in gem-
difluoroalkenes via photoredox/Pd dual catalysis, see: Zhu, C.; Zhang,
Y.-F.; Liu, Z.-Y.; Zhou, L.; Liu, H.; Feng, C. Selective C−F Bond
Carboxylation
of
gem-Difluoroalkenes
with
CO2
by
ACS Paragon Plus Environment