J. Am. Chem. Soc. 2001, 123, 3671-3686
3671
Geminal Dicarboxylates as Carbonyl Surrogates for Asymmetric
Synthesis. Part I. Asymmetric Addition of Malonate Nucleophiles
Barry M. Trost* and Chul Bom Lee
Contribution from the Department of Chemistry, Stanford UniVersity, Stanford, California 94305
ReceiVed October 24, 2000
Abstract: Asymmetric alkylations of allylic geminal dicarboxylates with dialkyl malonates have been
investigated. The requisite allylic geminal dicarboxylates are prepared in good yields and high isomeric purities
by two catalytic methods, ferric chloride-catalyzed addition of acid anhydrides to R,â-unsaturated aldehydes
and palladium-catalyzed isomerization and addition reactions of propargylic acetates. The complex of palladium-
(0) and the chiral ligand derived from the diamide of trans-1,2-diaminocyclohexane and 2-diphenylphosphi-
nobenzoic acid most efficiently catalyzed the asymmetric process to provide allylic carboxylate esters with
high ee. By systematic optimization studies, factors affecting the enantioselectivity of the reaction have been
probed. In general, higher ee’s have been achieved with those conditions which facilitate kinetic capture of
the incipient π-allylpalladium intermediate. These conditions also proved effective for achieving high
regioselectivities. The minor regioisomeric product was formed when reactive substrates or achiral ligands
were employed for the reaction, and could be minimized through the use of the chiral ligand. Under the
established conditions, the alkylation of various gem-dicarboxylates afforded monoalkylated products in high
yields with greater than 90% ee. The process constitutes the equivalent of an addition of a stabilized nucleophile
to a carbonyl group with high asymmetric induction.
Introduction
Strategies to effect such transformations derive from recognition
of the stereochemical courses in each step of the catalytic cycle
and analysis of symmetry elements imparted in the substrates
or intermediates. The current strategies involve differentiation
of (1) the enantiotopic leaving groups of meso-compounds,14-16
(2) the allylic termini of symmetric intermediates,17-20 (3) two
interconverting intermediates,21-24 (4) the enantioface of
alkenes,25-27 and (5) the enantiofaces of nucleophiles.28-33
Another strategy is represented by the desymmetrization
transformation in eq 1 wherein the two enantiotopic leaving
groups located on the same carbon atom of an achiral substrate
are differentiated. The asymmetric induction of this system,
The palladium-catalyzed allylic alkylation reaction is one of
the most powerful tools for the controlled introduction of
carbon-carbon and carbon-heteroatom bonds into organic
compounds.1-6 Recent employment of chiral ligands in this
process has provided an opportunity to perform the reaction in
an enantioselective fashion, thereby greatly increasing the utility
of this method.7-12 Unlike most transition metal-catalyzed
processes, asymmetric allylic alkylations offer multiple mech-
anisms as a source of asymmetry because the enantio-dis-
criminating event can arise in any one of many steps in the
catalytic cycle. Thus, this unique feature of the asymmetric
allylic alkylation (AAA) reaction allows for the conversion of
starting materials of various types, such as racemic, meso-, and
achiral compounds, into enantiomerically enriched material.13
(14) Trost, B. M.; Patterson, D. E. J. Org. Chem. 1998, 63, 1339.
(15) Muchow, G.; Brunel, J. M.; Maffei, M.; Pardigon, O.; Buono, G.
Tetrahedron 1998, 54, 10435.
(16) Hayashi, T.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1987, 28,
4837.
(1) Godleski, S. A. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 4, pp 585-661.
(2) Tsuji, J. Tetrahedron 1986, 42, 4361.
(3) Trost, B. M.; Verhoeven, T. R. In ComprehensiVe Organometallic
Chemistry; Wilkinson, G., Ed.; Pergamon Press: Oxford, 1982; Vol. 8,
Chapter 57.
(17) Trost, B. M.; Bunt, R. C. J. Am. Chem. Soc. 1994, 116, 9.
(18) von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32,
566.
(19) Dawson, G. J.; Frost, C. G.; Williams, J. M. J. Tetrahedron Lett.
1993, 34, 3149.
(20) Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769.
(21) Trost, B. M.; McEachern, E. J. J. Am. Chem. Soc. 1999, 121, 8649.
(22) Trost, B. M.; Toste, D. F. J. Am. Chem. Soc. 1999, 121, 3543.
(23) Pretot, R.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37, 323.
(24) Auburn, P. R.; Mackenzie, P. B.; Bosnich, B. J. Am. Chem. Soc.
1985, 107, 2033.
(4) Trost, B. M. Acc. Chem. Res. 1980, 13, 385.
(5) Tsuji, J. Palladium Reagents and Catalysts; Wiley: New York, 1996.
(6) Heck, R. F. Palladium Reagents in Organic Syntheses; Academic
Press: New York, 1985.
(7) Trost, B. M.; Lee, C. B. In Catalytic Asymmetric Synthesis, 2nd ed.;
Ojima, I., Ed.; Wiley-VCH: New York, 2000; Chapter 8E, pp 593-649.
(8) Pfaltz, A.; Lautens, M. In CompresnesiVe Asymmeric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Heidel-
berg, 1999; Vol. 2, Chapter 24, pp 833-884.
(9) Trost, B. M.; Van Vranken, D. L. Chem. ReV. 1996, 96, 395.
(10) Lu¨bbers, T.; Metz, P. In StereoselectiVe Synthesis; Helmchen, G.,
Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart, 1996;
Vol. 4, pp 2371-2473.
(25) Trost, B. M.; Krische, M. J.; Radinov, R.; Zanoni, G. J. Am. Chem.
Soc. 1996, 118, 6297.
(26) Fiaud, J. C.; Legros, J. Y. J. Org. Chem. 1990, 55, 4840.
(27) Fiaud, J. C.; Legros, J. Y. Tetrahedron Lett. 1988, 29, 2959.
(28) Trost, B. M.; Schroeder, G. M. J. Org. Chem. 2000, 65, 1569.
(29) Kuwano, R.; Ito, Y. J. Am. Chem. Soc. 1999, 121, 3236.
(30) Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999, 121, 6759.
(31) Trost, B. M.; Ariza, X. Angew. Chem., Int. Ed. Engl. 1997, 36, 2635.
(32) Trost, B. M.; Radinov, R.; Grenzer, E. M. J. Am. Chem. Soc. 1997,
119, 7879.
(11) Hayashi, T. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.;
VCH: New York, 1993; Chapter 7.1, pp 325-363.
(12) Consiglio, G.; Waymouth, R. M. Chem. ReV. 1989, 89, 257.
(13) Trost, B. M. Acc. Chem. Res. 1996, 29, 355.
(33) Sawamura, M.; Sudo, M.; Ito, Y. J. Am. Chem. Soc. 1996, 118,
3309.
10.1021/ja003774o CCC: $20.00 © 2001 American Chemical Society
Published on Web 03/28/2001