J. Am. Chem. Soc. 2001, 123, 4081-4082
4081
Communications to the Editor
systems but never isolated. The only reports of isolated examples,
thus far, are for [(µ-dcpe)Pd]26a,10 and [(µ-dippm)Pd]2.11 We now
report an unusual chelate ring-size-dependent reductive elimina-
tion of ethane from dimethylpalladium(II) complexes bearing
electron-rich chelating bisphosphines to afford the complexes [(µ-
dcpm)Pd]2 and [(µ-dtbpm)Pd]2 under extremely mild conditions.
Recently, Po¨rschke et al. showed that displacement of the tmeda
Facile Reductive Elimination of Ethane from
Strained Dimethylpalladium(II) Complexes
Steven M. Reid, Joel T. Mague, and Mark J. Fink*
Department of Chemistry, Tulane UniVersity
New Orleans, Louisiana 70118
12
ligand in (tmeda)PdMe2 by phosphines affords P2PdMe2 com-
plexes which may undergo facile reductive elimination of ethane
to give zerovalent palladium species.13 We have found that
(tmeda)PdMe2 reacts with bisphosphines Cy2P(CH2)nPCy2 (n )
1-4) in benzene at room temperature to afford dimethyl palladium
complexes 1a-d as air-stable, white, crystalline solids (eq 1).14
An X-ray crystal structure of 1a indicates a highly strained chelate
ring system with the P-Pd-P bond angle being only 73.34(4)°.15
ReceiVed September 13, 2000
Complexes of the type L2Pd(0) are often implicated in textbook
mechanisms as essential intermediates in various palladium-
catalyzed carbon-carbon coupling1 and cross-coupling reactions,2
and have fundamental and practical significance (L ) monoden-
1
tate phosphine P or
/ chelating bisphosphine P-P). Stable
2
complexes P2Pd have been studied for some time,3 but their
chelated counterparts, (P-P)Pd, are known only as reactive
intermediates. The high reactivity of (P-P)Pd has been attributed
to the acute P-Pd-P bond angle that spawns an isolobal
relationship to singlet methylene.4 One fate of these zerovalent
intermediates is their dimerization to complexes in which the
bidentate ligands bridge the two metal centers.5 We have shown
that the stable complex, [(µ-dcpe)Pd]2, dissociates readily and
reversibly in solution to give highly reactive (dcpe)Pd(0) frag-
ments.6 Accordingly, other dimeric complexes of this type could
serve as “bottled” sources of catalytically active (P-P)Pd. For
example, complexes such as [(µ-dippe)Pd]2,7 [(µ-dppm)Pd]2,8 and
Colorless 1a decomposed cleanly in benzene at 20 °C (days)
or more conveniently at 65 °C (18 h) to give ethane (δH ) 0.80)
and the red dipalladium(0) complex [(µ-dcpm)Pd]2, 2 (eq 2). The
[(µ-dtbpm)Pd]2 have been implicated in chemically reacting
9
(1) (a) Hegedus, L. S. In Organometallics in Synthesis; Schlosser, M., Ed.;
John Wiley and Sons, Ltd.: New York, 1994; pp 383-459. (b) Hermann, W.
A. In Applied Homogeneous Catalysis with Organometallic Compounds. A
ComprehensiVe Handbook in Two Volumes; Cornils, B., Hermann, W. A.,
Eds.; VCH Publishers: New York, 1996; Vol. 2, pp 712-732. (c) Farina,
V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1.
(2) (a) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852. (b) Hartwig, J. F.
Angew. Chem., Int. Ed. Engl. 1998, 37, 2046. (c) Wolfe, J. P.; Wagaw, S.;
Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805.
(3) (a) Otsuka, S.; Yoshida, T.; Matsumoto, M.; Nakatsu, K. J. Am. Chem.
Soc. 1976, 98, 5850. (b) Otsuka, S. J. Organomet. Chem. 1980, 200, 191. (c)
Urata, H.; Suzuki, H.; Moro-oka, Y.; Ikawa, T. J. Organomet. Chem. 1989,
364, 235. (d) Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116,
5969. (e) Paul, F.; Patt, J.; Hartwig, J. F. Organometallics 1995, 14, 3030. (f)
Kuran, W.; Musco, A. Inorg. Chim. Acta 1975, 12, 187.
(4) Hofmann, P. In Organometallics in Organic Synthesis; de Meijere, A.,
tom Dieck, H., Eds.; Springer-Verlag: Berlin, 1987; pp 1-35.
(5) (a) Chaudret, B.; Delavaux, B.; Poilblanc, R. Coord. Chem. ReV. 1988,
86, 191. (b) Puddephatt, R. J. Chem. Soc. ReV. 1983, 12, 99. (c) Anderson,
G. K. AdV. Organomet. Chem. 1993, 35, 1. (d) Mague, J. T. J. Cluster Sci.
1995, 6, 217.
formation of 2 likely proceeds through the dimerization of (dcpm)-
Pd(0) generated by the reductive elimination of ethane from 1a.
The related analogue [(µ-dtbpm)Pd]2, 3, was obtained as bright
orange crystals from the direct reaction between (tmeda)PdMe2
and dtbpm in hot benzene (eq 3). The intermediate (µ-dtbpm)-
(6) (a) Pan, Y.; Mague, J. T.; Fink, M. J. J. Am. Chem. Soc. 1993, 115,
3842. (b) Abbreviations used in this study: dcpm ) bis(dicyclohexylphos-
phino)methane; dcpe ) 1,2-bis(dicyclohexylphosphino)ethane; dcpp ) 1,3-
bis(dicyclohexylphosphino)propane; dcpb ) 1,4-bis(dicyclohexylphosphino)-
butane; dippm
) bis(diisopropylphosphino)methane; dippe ) 1,2-bis-
PdMe2 could not be isolated, presumably because rapid elimina-
tion of ethane occurs under the reaction conditions necessary for
its formation.16 The air-sensitive complexes 2 and 3 each gave
(diisopropylphosphino)ethane; dppm ) bis(diphenylphosphino)methane; dppe
) 1, 2-(bisdiphenylphosphino)ethane; dppp ) 1,3-bis(diphenylphosphino)-
propane; dmpm ) bis(dimethylphosphino)methane; dmpe ) 1,2-bis(dimeth-
ylphosphino)ethane; dtbpm ) bis(di-tert-butylphosphino)methane; tmeda )
N,N,N′,N′-tetramethylethylenediamine.
(10) We recently found an efficient and improved route to [(µ-dcpe)Pd]2
and [(µ-dippe)Pd]2; results will be published elsewhere.
(11) Dohring, A.; Goddard, R.; Hopp, G.; Jolly, P. W.; Kokel, N.; Kruger,
C. Inorg. Chim. Acta 1994, 222, 179.
(12) (a) de Graaf, W.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; van
Koten, G. Organometallics 1989, 8, 2907. (b) de Graaf, W.; Boersma, J.;
Grove, D.; Spek, A. L.; van Koten, G. Recl. TraV. Chim. Pays-Bas 1988,
107, 299.
(13) Krause, J.; Cestaric, G.; Haack, K.-J.; Seevogel, K.; Storm, W.;
Po¨rschke, K.-R. J. Am. Chem. Soc. 1999, 121, 9807.
(14) The structural assignment of the compounds 1a-d are entirely
consistent with spectroscopic data. The mononuclear nature of these species
is established by a combination of mass spectral techniques including FAB,
electrospray, and chemical ionization.
(7) (a) Fryzuk, M. D.; Clentsmith, G. K. B.; Rettig, S. J. Organometallics
1996, 15, 2083. (b) Trebbe, R.; Goddard, R.; Rufinska, A.; Seevogel, K.;
Po¨rschke, K.-R. Organometallics 1999, 18, 2466. (c) Schager, F.; Bonrath,
W.; Po¨rschke, K.-R.; Kessler, M.; Kru¨ger, C.; Seevogel, K. Organometallics
1997, 16, 4276. (d) Schager, F.; Haack, K. J.; Mynott, R.; Rufinska, A.;
Po¨rschke, K.-R. Organometallics 1998, 17, 807.
(8) (a) Gauthron, I.; Mugnier, Y.; Hierso, K.; Harvey, P. D. New J. Chem.
1998, 237. (b) Young, S. J.; Kellenberger, B.; Reibenspies, J. H.; Himmel, S.
E.; Manning, M.; Anderson, O. P.; Stille, J. K. J. Am. Chem. Soc. 1988, 110,
5744.
(9) (a) Hofmann, P.; Heiss, H.; Neiteler, P.; Mu¨ller, G.; Lachmann, J.
Angew. Chem., Int. Ed. Engl. 1990, 29, 880. (b) Hofmann, P.; Heiss, H.;
Neiteler, P.; Mu¨ller, G.; Lachman, J. Angew. Chem. 1990, 102, 935.
10.1021/ja0056062 CCC: $20.00 © 2001 American Chemical Society
Published on Web 04/05/2001