Please do not adjust margins
Green Chemistry
Page 6 of 7
COMMUNICATION
Journal Name
Zhao, J. Li, Y. Fu, B. Liao, Q. X. Guo, ChemSusChem 2010, 3,
directly produce GVL with a two-step strategy, affording a GVL
yield of 51% from glucose. Finally, a wide substrate scope was
demonstrated for the reaction system with the conversion of
various ketones and aldehydes into the corresponding alcohols
in excellent yield at room temperature. The introduced system
with AB as a reducing agent is arguably among the most
efficient, simple, environmentally friendly, and energy-saving
systems developed to date for the selective reductive
conversion of biomass-derived compounds. Accordingly, it can
be anticipated the results will open significant new possibilities
for the reductive conversion of biomass.
DOI: 10.1039/D0GC02372H
S. Saravanamurugan, S. Yang, ACS Sustain. Chem. Eng. 2017,
5, 9640-9644. d) J. He, H. Li, A. Riisager, S. Yang,
ChemCatChem 2018, 10, 430-438. d) Z. Liu, Z. Yang, P. Wang,
X. Yu, Y. Wu, H. Wang, Z. Liu, ACS Sustain. Chem. Eng. 2019, 7,
18236-18241.
a) H. Li, H. Wu, H. Zhang, Y. Su, S. Yang, E. J.
Hensen, ChemSusChem 2019, 12, 3778-3784. b) C. Wu, X. Luo,
H. Zhang, X. Liu, G. Ji, Z. Liu, Z. Liu, Green Chem. 2017, 19,
3525-3529. c) A. S. Touchy, S. M. A. Hakim Siddiki, K. Kon, K. I.
Shimizu, ACS Catal. 2014, 4, 3045-3050.
8
9
a) B. Peng, J. Chen, Energ. Environ. Sci. 2008, 1, 479-483. b) V.
Rizzi, D. Polino, E. Sicilia, N. Russo, M. Parrinello, Angew.
Chem. Int. Ed. 2019, 58, 3976-3980.
10 M. E. Bluhm, M. G. Bradley, R. Butterick, U. Kusari, L. G.
Sneddon, J. Am. Chem. Soc. 2006, 128, 7748-7749.
11 X. Yang, L. Zhao, T. Fox, Z. X. Wang, H. Berke, Angew. Chem.
Int. Ed. 2010, 49, 2058-2062.
12 Y. Zhou, Z. Li, Y. Liu, J. Huo, C. Chen, Q. Li, S. Y. Niu, S.
Wang, ChemSusChem 2020, 13, 1746-1750.
Conflicts of interest
The authors declare no competing interests.
13 L. Shi, Y. Liu, Q. Liu, B. Wei, G. Zhang, Green Chem. 2012, 14,
1372-1375.
14 a) F. C. Lightstone, T. C. Bruice, Bioorg. Chem. 1998, 26, 193-
199. b) G. Illuminati, L. Mandolini, Accounts Chem. Res. 1981,
14, 95-102.
15 a) A. Pelter, R. M. Rosser, S. Mills, J. Chem. Soc. Perkin Trans.
1984, 1, 717-720. b) H. C. Kelly, V. B. Marriott, Inorg.
Chem. 1979, 18, 2875-2878.
Acknowledgements
WZ acknowledge The Chinese State Scholarship (No.
201906670009) for supporting a stay at the Technical University
of Denmark to conduct this study. SY acknowledges the
National Natural Science Foundation of China (No. 21576059 16 a) X. Yang, T. Fox, H. Berke, Tetrahedron 2011, 67, 7121-7127.
b) J. S. Wang, R. A. Geanangel, Inorg. Chim. Acta 1988, 148,
185-190.
17 C. Adams, V. Gold, D. M. Reuben, J. Chem. Soc. Perk. Trans.
1977, 2, 1466-1472.
18 a) D. C. Wigfield, F. W. Gowland, Tetrahedron Lett. 1976, 17,
3373-3376; b) I. E. Golub, E. S. Gulyaeva, O. A. Filippov, V. P.
Dyadchenko, N. V. Belkova, L. M. Epstein, E. S. Shubina, J.
Phys. Chem. A 2015, 119, 3853-3868.
19 X. Wang, W. Yao, D. Zhou, H. Fan, Mol. Phys. 2013, 111, 3014-
3024.
and 21666008), while AR and SM acknowledge the Department
of Chemistry, Technical University of Denmark for support. 800
MHz NMR spectra were recorded on the spectrometer of the
DTU NMR Center supported by the Villum Foundation.
Notes and references
1
Y. Liao, S. F. Koelewijn, G. Van den Bossche, J. Van Aelst, S. Van
den Bosch, T. Renders, , K. Navare, T. Nicolaï, K. Van Aelst, M.
Maesen, H. Matsushima, J. Thevelein, K. Van Acker, B. Lagrain,
D. Verboekend, B. F. Sels, Science 2020, 367, 1385-1390.
a) C. Li, L. Wang, M. Wang, B. Liu, X. Liu, D. Cu, Angew. Chem.
2019, 131, 11556-11560. b) Á. Szabolcs, M. Molnár, G. Dibó,
Green Chem. 2013, 15, 439-445. c) S. Li, Y. Wang, Y. Yang, B.
Chen, J. Tai, H. Liu, B. Han, Green Chem. 2019, 21, 770-774. d)
C. Xie, J. Song, H. Wu, Y. Hu, H. Liu, Z. Zhang, P. Zhang, B. F.
Chen, B. Han, J. Am. Chem. Soc. 2019, 141, 4002-4009. e) F.
M. A. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J.
Klankermayer, W. Leitner, Angew. Chem. Int. Ed. 2010, 49,
5510-5514. f) T. Komanoya, T. Kinemura, Y. Kita, K. Kamata,
M. Hara, J. Am. Chem. Soc. 2017, 139, 11493-11499.
a) M. Mascal, E. B. Nikitin, Green Chem. 2010, 12, 370-373. b)
S. Kang, J. Fu, G. Zhang, Renew. Sust. Energ. Rev. 2018, 94,
340-362
a) K. Yan, Y. Yang, J. Chai, Y. Lu, Appl. Catal. B: Environ. 2015,
179, 292-304. b) S. G. Wettstein, D. M. Alonso, Y. Chong, J. A.
Dumesic, Energ. Environ. Sci. 2012, 5, 8199-8203.
a) A. S. Touchy, S. M. A. Hakim Siddiki, K. Kon, K. I. Shimizu,
ACS Catal. 2014, 4, 3045-3050. b) W. Luo, M. Sankar, A. M.
Beale, Q. He, C. J. Kiely, P. C. Bruijnincx, B. M. Weckhuysen,
Nature Commun. 2015, 6, 1-10.
20 a) L. Peng, L. Lin, H. Li, Q. Yang, Appl. Energ. 2011, 88, 4590-
4596. b) L. Jiang, L. Zhou, J. Chao, H. Zhao, T. Lu, Y. Su, X. M.
Yang, J. Xu, Appl. Catal. B: Environ. 2018, 220, 589-596.
2
3
4
5
6
7
H. Li, W. Zhao, W. Dai, J. Long, M. Watanabe, S. Meier, S.
Saravanamurugan. S. Yang, A. Riisager, Green Chem. 2018, 20,
5327-5335.
a) X. L. Du, L. He, S. Zhao, Y. M. Liu, Y. Cao, H. Y. He, K. N.
Fan, Angew. Chem. Int. Ed. 2011, 50, 7815-7819. b) L. Deng, Y.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins