Edge Article
Chemical Science
a pathway by which hydrogen is eliminated from a salan
complex to afford the salen compound.
Posner, G. Leitus, L. Avram and D. Milstein, Angew. Chem.,
Int. Ed., 2017, 56, 4229–4233; (c) J. Neumann, S. Elangovan,
A. Spannenberg, K. Junge and M. Beller, Chem.–Eur. J.,
2017, 23, 5410–5413; (d) N. Deibl and R. Kempe, Angew.
Chem., Int. Ed., 2017, 56, 1663–1666; (e) M. Mastalir,
Conclusions
¨
In summary, we have described a new catalyst for the accept-
orless dehydrogenation of alcohols. The manganese(III) salen
complex 2 mediates the formation of imines from alcohols and
amines with the liberation of hydrogen gas. The reaction can be
performed with different alcohols and amines and can be
extended to the synthesis of pyrroles. Complex 2 can be recov-
ered from the reaction and used again without signicantly
affecting the catalytic activity. The mechanism is believed to
involve a bifunctional pathway where both the metal and the
ligand participates in the dehydrogenation reaction. We envi-
sion the discoveries will spur much interest in the development
of new transformations with hydrogen gas and manganese(III)
catalysts.
M. Glatz, N. Gorgas, B. Stoger, E. Pittenauer, G. Allmaier,
L. F. Veiros and K. Kirchner, Chem.–Eur. J., 2016, 22,
12316–12320; (f) S. Elangovan, J. Neumann, J.-B. Sortais,
K. Junge, C. Darcel and M. Beller, Nat. Commun., 2016, 7,
12641.
5 (a) V. Papa, J. R. Cabrero-Antonino, E. Albericio,
A. Spannenberg, K. Junge, H. Junge and M. Beller, Chem.
Sci., 2017, 8, 3576–3585; (b) N. A. Espinosa-Jalapa,
A. Nerush, L. J. W. Shimon, G. Leitus, L. Avram, Y. Ben-
David and D. Milstein, Chem.–Eur. J., 2017, 23, 5934–5938;
(c) S. Elangovan, M. Garbe, H. Jiao, A. Spannenberg,
K. Junge and M. Beller, Angew. Chem., Int. Ed., 2016, 55,
15364–15368; (d) F. Kallmeier, T. Irrgang, T. Dietel and
R. Kempe, Angew. Chem., Int. Ed., 2016, 55, 11806–11809;
(e) S. Elangovan, C. Topf, S. Fischer, H. Jiao,
A. Spannenberg, W. Baumann, R. Ludwig, K. Junge and
M. Beller, J. Am. Chem. Soc., 2016, 138, 8809–8814.
Conflicts of interest
There are no conicts to declare.
6 For additional examples, see: (a) D. Wei, A. Bruneau-Voisine,
T. Chauvin, V. Dorcet, T. Roisnel, D. A. Valyaev, N. Lugan and
J.-B. Sortais, Adv. Synth. Catal., 2018, 360, 676–681; (b)
A. Kumar, N. A. Espinosa-Jalapa, G. Leitus, Y. Diskin-
Posner, L. Avram and D. Milstein, Angew. Chem., Int. Ed.,
2017, 56, 14992–14996; (c) S. Chakraborty, U. Kumar Das,
Y. Ben-David and D. Milstein, J. Am. Chem. Soc., 2017, 139,
11710–11713; (d) F. Kallmeier, B. Dudziec, T. Irrgang and
R. Kempe, Angew. Chem., Int. Ed., 2017, 56, 7261–7265; (e)
M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier and
K. Kirchner, J. Am. Chem. Soc., 2016, 138, 15543–15546; (f)
Acknowledgements
The project was supported by the Technical University of Den-
mark through PhD fellowships to SVS and CS. We thank
Mathias Børsting for his assistance in performing the Hammett
study and determining the KIE.
Notes and references
1 (a) A. Corma, J. Navas and M. J. Sabater, Chem. Rev., 2018,
118, 1410–1459; (b) C. Gunanathan and D. Milstein,
Science, 2013, 341, 1229712; (c) S. Bahn, S. Imm,
˜
´
M. Pena-Lopez, P. Piehl, S. Elangovan, H. Neumann and
M. Beller, Angew. Chem., Int. Ed., 2016, 55, 14967–14971.
7 (a) P. L. Pauson and G. K. Friestad, e-EROS, 2008, DOI:
10.1002/047084289x.rd001.pub2; (b) Y. Xie, J. H. Jang,
R. B. King and H. F. Schaefer III, Inorg. Chem., 2003, 42,
5219–5230.
¨
L. Neubert, M. Zhang, H. Neumann and M. Beller,
ChemCatChem, 2011, 3, 1853–1864; (d) Y. Obora and
Y. Ishii, Synlett, 2011, 30–51; (e) R. Yamaguchi, K. Fujita
and M. Zhu, Heterocycles, 2010, 81, 1093–1140; (f)
A. J. A. Watson and J. M. J. Williams, Science, 2010, 329,
635–636; (g) G. E. Dobereiner and R. H. Crabtree, Chem.
Rev., 2010, 110, 681–703.
2 (a) G. A. Filonenko, R. van Putten, E. J. M. Hensen and
E. A. Pidko, Chem. Soc. Rev., 2018, 47, 1459–1483; (b)
F. Kallmeier and R. Kempe, Angew. Chem., Int. Ed., 2018,
57, 46–60; (c) B. Maji and M. K. Barman, Synthesis, 2017,
49, 3377–3393; (d) M. Garbe, K. Junge and M. Beller, Eur. J.
Org. Chem., 2017, 4344–4362; (e) E. Balaraman,
8 (a) J. F. Larrow, E. N. Jacobsen, Y. Gao, Y. Hong, X. Nie and
C. M. Zepp, J. Org. Chem., 1994, 59, 1939–1942; (b)
E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker and
L. Deng, J. Am. Chem. Soc., 1991, 113, 7063–7064.
9 (a) W. Liu and J. T. Groves, Acc. Chem. Res., 2015, 48, 1727–
1735; (b) R. I. Khusnutdinov, A. R. Bayguzina and
U. M. Dzhemilev, Russ. J. Org. Chem., 2012, 48, 309–348; (c)
E. M. McGarrigle and D. G. Gilheany, Chem. Rev., 2005,
105, 1563–1602; (d) T. Katsuki, Synlett, 2003, 281–297.
A. Nandakumar, G. Jaiswal and M. K. Sahoo, Catal. Sci. 10 For recent reviews on the synthesis of imines from alcohols
Technol., 2017, 7, 3177–3195; (f) A. Quintard and
J. Rodrigues, ChemSusChem, 2016, 9, 28–30.
3 A. Mukherjee, A. Nerush, G. Leitus, L. J. W. Shimon, Y. Ben
and amines, see: (a) B. Chen, L. Wang and S. Gao, ACS Catal.,
2015, 5, 5851–5876; (b) R. D. Patil and S. Adimurthy, Asian J.
Org. Chem., 2013, 2, 726–744.
David, N. A. E. Jalapa and D. Milstein, J. Am. Chem. Soc., 11 (a) P. A. Dub and J. C. Gordon, ACS Catal., 2017, 7, 6635–
2016, 138, 4298–4301.
6655; (b) J. R. Khusnutdinova and D. Milstein, Angew.
Chem., Int. Ed., 2015, 54, 12236–12273; (c) R. H. Morris,
Acc. Chem. Res., 2015, 48, 1494–1502.
4 (a) N. A. Espinosa-Jalapa, A. Kumar, G. Leitus, Y. Diskin-
Posner and D. Milstein, J. Am. Chem. Soc., 2017, 139,
11722–11725; (b) S. Chakraborty, U. Gellrich, Y. Diskin-
This journal is © The Royal Society of Chemistry 2018
Chem. Sci.