Symmetry and Geometry Considerations of Atom Transfer
methane monoxygenase.11-14 In the synthesis of fine organ-
ics, the utilization of catalytic systems that transfer one15-17
or two18-22 oxygens is of increasing importance as regio-
and enantioselectivities rise. For inorganic applications, the
placement or removal of an oxo group is often a critical
synthetic procedure, especially in applications to early
transition metal complex synthesis.23-26 Commodity chemi-
cals synthesis also revolves around oxidation processes that
utilize O-atom transfer, including many where dioxygen is
the penultimate source.27
The transfer of an oxygen atom from a metal-oxo
functionality to a substrate, and its microscopic reverse, is a
straightforward oxygenation reaction. While the chemistry
of (silox)3WNO (12) was being investigated, the identifica-
tion of (silox)3WN (11) was needed, and deoxygenation of
12 seemed to be a plausible route given Cummins’ related
preparation of a Cr(VI) nitride from its corresponding Cr-
(II) nitrosyl.24 During the course of examining the deoxy-
genation of a 12 by (silox)3M (M ) Nb (1-Nb), Ta (1-Ta);
t
silox ) Bu3SiO) some unusual observations were made.28
Previously, (silox)3Ta (1-Ta) was shown to swiftly strip
oxygen atoms from N2O, NO,29 CO2, CO,30 and epoxides31
to form (silox)3TaO (2-Ta) below room temperature, yet no
O-atom transfer from the tungsten nitrosyl was observed at
23 °C. When an appropriate masked version of its niobium
derivative, (silox)3Nb(η2-N,C-4-picoline) (1-Nb-4-pic),
was examined, the deoxygenation of (silox)3WNO (12) did
occur, albeit at elevated temperatures. It was surprising that
the tungsten nitrosyl was stable to 1-Ta under ambient
conditions, and was only observed to undergo deoxygenation
at significantly higher temperatures with byproduct forma-
tion.
(5) (a) Lim, B. S.; Holm, R. H. J. Am. Chem. Soc. 2001, 123, 1920-
1930. (b) Sung, K. M.; Holm, R. H. J. Am. Chem. Soc. 2001, 123,
1931-1943.
(6) (a) Pietsch, M. A.; Hall, M. B. Inorg. Chem. 1996, 35, 1273-1278.
(b) Pietsch, M. A.; Couty, M.; Hall, M. B. J. Phys. Chem. 1995, 99,
16315-16319.
(7) Thomson, L. M.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3995-
4002.
(8) (a) Jin, N.; Groves, J. T. J. Am. Chem. Soc. 1999, 121, 2923-2924.
(b) Groves, J. T.; Lee, J.; Marla, S. S. J. Am. Chem. Soc. 1997, 119,
6269-6273.
(9) Jin, N.; Bourassa, J. L.; Tizio, S. C.; Groves, J. T. Angew. Chem., Int.
Ed. 2000, 39, 3849-3851.
(10) (a) Butler, A. Coord. Chem. ReV. 1999, 187, 17-35. (b) Butler, A.;
Baldwin, A. H. Struct. Bonding 1997, 89, 109-132.
(11) (a) Merkx, M.; Kopp, D. A.; Sazinsky, M. H.; Blazyk, J. L.; Mu¨ller,
J.; Lippard, S. J. Angew. Chem., Int. Ed. 2001, 40, 2782-2807. (b)
Wallar, B. J.; Lipscomb, J. D. Chem. ReV. 1996, 96, 2625-2657. (c)
Que, L.; Tolman, W. B. Angew. Chem., Int. Ed. 2002, 41, 1114-
1137.
Reported herein is a study of the metal dependence on
the deoxygenation of (silox)3WNO (10) and R3PO (R ) Me,
Ph, tBu) by (silox)3M (M ) V, Nb, Ta), replete with synthetic
and structural details of the tungsten system and calculational
support pertaining to the thermodynamics of the atom transfer
events. In this investigation, the symmetry requirements of
O-atom transfer and related geometric constraints are re-
vealed. Related interpretations of state selective chemistry
have been proferred by Shaik in the actions of cytochrome
P450,3 and Groves in the study of manganese V oxo
porphyrin derivatives.8 While Theopold did not find spin state
changes to be consequential in O-atom transfer involving
chromium oxo species,32 Nocera has designed photochemi-
cally activated “pac-man” porphyrin systems that take
advantage of the preferred side-on geometry for O-atom
transfer.33 It is clear that the tuning of electronic states34,35s
whether intentional or serendipitousshas profound implica-
tions on atom transfer events.
(12) Ambundo, E. A.; Friesner, R. A.; Lippard, S. J. J. Am. Chem. Soc.
2002, 124, 8770-8771.
(13) Brazeau, B. J.; Austin, R. N.; Tarr, C.; Groves, J. T.; Lipscomb, J. D.
J. Am. Chem. Soc. 2001, 123, 11831-11837.
(14) Costas, M.; Rohde, J. U.; Stubna, A.; Ho, R. Y. N.; Quaroni, L.;
Munck, E.; Que, L. J. Am. Chem. Soc. 2001, 123, 12931-12932.
(15) (a) Palucki, M.; Finney, N. S.; Pospisil, P. J.; Gu¨ler, M. L.; Ishida,
T.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 948-954. (b) Finney,
N. S.; Pospisil, P. J.; Chang, S.; Palucki, M.; Konsler, R. G.; Hansen,
K. B.; Jacobsen, E. N. Angew. Chem., Int. Ed. Engl. 1997, 36, 1720-
1723.
(16) Katsuki, T. Coord. Chem. ReV. 1995, 140, 189-214.
(17) (a) Cavallo, L.; Jacobsen, H. Chem. Eur. J. 2001, 7, 800-807. (b)
Cavallo, L.; Jacobsen, H. Angew. Chem., Int. Ed. 2000, 39, 589-
592. (c) Linde, C.; A° kermark, B.; Norrby, P.-O.; Svensson, M. J. Am.
Chem. Soc. 1999, 121, 5083-5084. (d) Linde, C.; Arnold, M.; Norrby,
P.-O.; A° kermark, B. Angew. Chem., Int. Ed. Engl. 1997, 36, 1723-
1725.
(18) (a) Kolb, H. C.; VanNieuwenzhe, M. S.; Sharpless, K. B. Chem.
ReV. 1994, 94, 2483-2547. (b) Andersson, M. A.; Epple, R.; Fokin,
V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 472-
475.
(19) (a) DelMonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.;
Singleton, D. A.; Strassner, T.; Thomas, A. A. J. Am. Chem. Soc.
1997, 119, 9907-9908. (b) Norrby, P.-O.; Rasmussen, T.; Haller, J.;
Strassner, T.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 10186-
10192.
(27) (a) Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis; Wiley-
Interscience: New York, 1992. (b) Sheldon, R. A.; Kochi, J. K. Metal
Catalyzed Oxidations of Organic Compounds; Academic Press: New
York, 1981.
(28) Veige, A. S.; Slaughter, L. M.; Wolczanski, P. T.; Matsunaga, N.;
Decker, S. A.; Cundari, T. R. J. Am. Chem. Soc. 2001, 123, 6419-
6420.
(29) Veige, A. S.; Kleckley, T. S.; Chamberlin, R. L. M.; Neithamer, D.
R.; Lee, C. E.; Wolczanski, P. T.; Lobkovsky, E. B.; Glassey, W. V.
J. Organomet. Chem. 1999, 591, 194-203.
(30) Neithamer, D. R.; LaPointe, R. E.; Wheeler, R. A.; Richeson, D. S.;
Van Duyne, G. D.; Wolczanski, P. T. J. Am. Chem. Soc. 1989, 111,
9056-9072.
(31) Bonanno, J. B.; Henry, T. P.; Neithamer, D. R.; Wolczanski, P. T.;
Lobkovsky, E. B. J. Am. Chem. Soc. 1996, 118, 5132-5133.
(32) Hess, J. S.; Leelasubcharoen, S.; Rheingold, A. L.; Doren, D. J.;
Theopold, K. H. J. Chem. Soc. 2002, 124, 2454-2455.
(33) Pistorio, B. J.; Chang, C. J.; Nocera, D. G. J. Chem. Soc. 2002, 124,
7884-7885.
(34) (a) Poli, R. Chem. ReV. 1996, 96, 2135-2204. (b) Poli, R. Acc. Chem.
Res. 1997, 30, 494-501.
(35) Poli, R.; Harvey, J. N. Chem. Soc. ReV. 2003, 32, 1-8.
(20) Corey, E. J.; Noe, M. C. J. Am. Chem. Soc. 1996, 118, 11038-11053.
(21) (a) Chen, K.; Costas, M.; Kim, J. H.; Tipton, A. K.; Que, L. J. Am.
Chem. Soc. 2002, 124, 3026-3035. (b) Chen, K.; Costas, M.; Que,
L. J. Chem. Soc., Dalton Trans. 2002, 672-679. (c) Costas, M.; Que,
L. Angew. Chem., Int. Ed. 2002, 41, 2179-2181. (d) Ryu, J. K.; Kim,
J.; Costas, M.; Chen, K.; Nam, W.; Que, L. Chem. Commun. 2002,
1288-1289.
(22) White, M. C.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2001,
123, 7194-7195.
(23) (a) Ruiz, J.; Vivanco, M.; Floriani, C.; Chiesi-Villa, A.; Guastini, C.
J. Chem. Soc., Chem. Commun. 1991, 762-764. (b) Vivanco, M.;
Ruiz, J.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics
1993, 12, 1802-1810.
(24) Odom, A. L.; Cummins, C. C.; Protasiewicz, J. D. J. Am. Chem. Soc.
1995, 117, 6613-6614.
(25) (a) Crevier, T. J.; Mayer, J. M. J. Am. Chem. Soc. 1997, 119, 8485-
8491. (b) Hall, K. A.; Mayer, J. M. J. Am. Chem. Soc. 1992, 114,
10402-10411.
(26) Sung, K.-M.; Holm, R. H. Inorg. Chem. 2001, 40, 4518-4525.
Inorganic Chemistry, Vol. 42, No. 20, 2003 6205