construction of functionalized bicyclic molecules and a
computational analysis of their ability to occupy the same
relative geometric space as the phosphate portion of ATP.
Synthesis of the dipole precursor for the first adenosine-
linked 1,3-dipolar cycloaddition reaction to form scaffold 1
is shown in Scheme 1. Modification to the dipole begins
Scheme 1a
The 1,3-dipolar cycloaddition reaction is an important
transformation for the construction of polyheterocyclic
molecules.7 The concurrent formation of two carbon-carbon
bonds, yielding cyclic or even bicyclic heterocycles, makes
this reaction a good choice for diversity-oriented synthesis.
Examples of the 1,3-dipolar cycloaddition reaction for the
construction of nucleoside-like molecules include the syn-
thesis of heterocyclic aromatics such as nucleo-bases,8
synthesis of nucleoside antibiotic natural products,9 stereo-
specific generation of ribose moieties,10 and functionalization
of the 2′, 3′, and 5′ positions of nucleosides.11 While these
thermally initiated cycloadditions have proven useful, the
rhodium(II)-mediated cyclization-cycloaddition strategy is
subject to side reactivity12 and its use with molecules of this
complexity has remained elusive. We have previously
reported a diastereoselective rhodium(II) 1,3-dipolar cyclo-
addition with a class of mesoionic dipoles known as the
isomu¨nchnones.13 We sought to expand the generality of the
process and diversity of potential substrates to include
molecules of biological origin. In this example, the generation
of nucleoside-derived isomu¨nchnones and dipolarophiles will
provide adenosine-derived cycloadducts (1-3) with the
triphosphate of ATP being replaced by a polyoxygenated
bicyclic heterocycle.
a (a) (CH3CO)2O, pyridine, rt, 85%; (b) Rapoport’s reagent,
CH2Cl2, rt, 92%; (c) methyl malonyl chloride, toluene, bubbling
N2, 80 °C, 50%; (d) MsN3, Et3N, CH2Cl2, rt, 65%; (e) ethyl vinyl
ether, Rh2(pfbm)4, toluene, 60 °C, 70%; (f) TFA/H2O 10:1, 0 °C;
Pd/C, EtOH, NH4CO2H, 95%.
with amidation of 5′-aminoadenosine 414 under careful
control of both temperature and time, to protect against
overacylation of the adenine basic nitrogen. Rapoport’s Cbz-
transferring reagent,15 originally developed for deoxy-ribo-
nucleosides, was found to efficiently protect the exocyclic
amine. Imidation with methyl malonyl chloride was carried
out in refluxing toluene with nitrogen bubbling through the
reaction mixture in order to facilitate removal of HCl, which
could interfere with reaction progress and prove detrimental
to the acid-sensitive nucleoside moiety.16 The diazotransfer
step proceeded smoothly to give R-diazoimide 5 in 25% yield
over four steps from amine-nucleoside 4. Diazoimide 5 was
subjected to the tandem Rh(II)-catalyzed carbonyl-ylide
formation and cycloaddition with ethyl vinyl ether in toluene
at 60 °C. Although the potential Lewis acidity of rhodium(II)
perfluorobutyramidate [Rh2(pfbm)4] raised concerns for
possible nucleoside decomposition, the catalyst proved mild
enough to allow the reaction at elevated temperatures. While
the cycloaddition of ethyl vinyl ether proceeded with high
diastereoselectivity, providing only the endo cycloaddition
product, as previously described,17 the chiral ribose portion
of adenosine provided little facial bias for dipolarophile
approach. Deprotection of the purine exocyclic amine and
removal of the ribose acetonide furnished a 1:1 mixture of
diastereomeric products 1a and 1b.
(7) (a) Adams, D. R.; Boyd, A. S. F.; Ferguson, R.; Grierson, D. S.;
Monneret, C. Nucleosides Nucleotides 1998, 17, 1053-1075. (b) Padwa,
A.; Prein, M. J. Org. Chem. 1997, 62, 6842-6854. (c) Leggio, A.; Liguori,
A.; Procopio, A.; Siciliano, C.; Sindona, G. Nucleosides Nucleotides 1997,
16, 1515-1518. (d) Padwa, A.; Austin, D. J.; Hornbuckle, S. F. J. Org.
Chem. 1996, 61, 63-72. (e) 1,3-Dipolar Cycloaddition Chemistry; Padwa,
A., Ed.; Wiley: New York, 1984; Vols. 1 and 2.
(8) (a) De las Heras, F. G.; Tam, S. Y. K.; Klein, R. S.; Fox, J. J. J.
Org. Chem. 1976, 41, 84-90. (b) Stimac, A.; Townsend, L. B.; Kobe, J.
Nucleosides Nucleotides 1991, 10, 727-8.
(9) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. J. Org. Chem.
2000, 65, 5575-5589.
(10) (a) Chiacchio, U.; Corsaro, A.; Gumina, G.; Rescifina, A.; Iannazzo,
D.; Piperno, A.; Romeo, G.; Romeo, R. J. Org. Chem. 1999, 64, 9321-
9327. (b) Chiacchio, U.; Rescifina, A.; Iannazzo, D.; Romeo, G. J. Org.
Chem. 1999, 64, 28-36. (c) Chiacchio, U.; Corsaro, A.; Iannazzo, D.;
Piperno, A.; Rescifina, A.; Romeo, R.; Romeo, G. Tetrahedron Lett. 2001,
42, 1777-1780.
(11) (a) Chiacchio, U.; Rescifina, A.; Corsaro, A.; Pistara, V.; Romeo,
G.; Romeo, R. Tetrahedron: Asymmetry 2000, 11, 2045-2048. (b) Lazrek,
H. B.; Engels, J. W.; Pfleiderer, W. Nucleosides Nucleotides 1998, 17,
1851-1856. (c) Xiang, Y.; Schinazi, R. F.; Zhao, K. Bioorg. Med. Chem.
Lett. 1996, 6, 1475-1478. Rong, J.; Roselt, P.; Plavec, J.; Chattopadhyaya,
J. Tetrahedron 1994, 50, 4921-36. (d) Haebich, D. Synthesis 1992, 358-
60.
Synthesis of the second adenosine scaffold, 2, begins with
the oxidized adenosine molecule 5′-carboxyadenosine (6)
(12) Padwa, A.; Austin, D. J. Angew. Chem., Int. Ed. Engl. 1994, 33,
1797-1815.
(13) (a)Whitehouse, D. L.; Nelson, K. H. Jr.; Savinov, S. N.; Lowe, R.
S.; Austin, D. J. Bioorg. Med. Chem. 1998, 6, 1273-1282. (b) Whitehouse,
D. L.; Nelson, K. H. Jr.; Savinov, S. N.; Austin, D. J. Tetrahedron Lett.
1997, 38, 7139-7142.
(14) Liu, F.; Austin, D. J. Tetrahedron Lett. 2001, 42, 3153-4.
(15) Watkins, B. E.; Kiely, J. S.; Rapoport, H. J. Am. Chem. Soc. 1982,
104, 5702-5708.
(16) See Supporting Information for details.
(17) Savinov, S. N.; Austin, D. J. Chem. Commun. (Cambridge) 1999,
1813-1814.
2274
Org. Lett., Vol. 3, No. 15, 2001