Journal of the American Chemical Society
Page 4 of 5
Chem. Soc. 2014, 136, 14642-14645. (r) Nakajima, M.; Fava, E.;
induced photoredox catalysis. A turnover frequency up to
1500 h-1 was achieved with 0.1 mol % catalyst loading.
Loescher, S.; Jiang, Z.; Rueping, M. Angew. Chem. Int. Ed. 2015, 54,
8828-8832. (s) Welin, E. R.; Warkentin, A. A.; Conrad, J. C.;
MacMillan, D. W. C. Angew. Chem. Int. Ed. 2015, 54, 9668-9672. (t)
Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao,
W.-J. Angew. Chem. Int. Ed. 2015, 54, 11196-11199. (u) Sahoo, B.; Li, J.-
L.; Glorius, F. Angew. Chem. Int. Ed. 2015, 54, 11577-11580.
1
2
3
4
Supporting Information
Experimental procedures, compound characterizations,
spectra, GC traces and calculation details. This material is
5
6
7
8
[5] (a) Akiyama, T. Chem. Rev. 2007, 107, 5744-5758. (b) Ouellet, S.
G.; Walji, A. M.; Macmillan, D. W. C. Acc. Chem. Res. 2007, 40, 1327-
1339. (c) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498-2518.
[6] For selected examples, see: (a) Hedstrand, D. M.; Kruizinga, W.
H.; Kellogg, R. M. Tetrahedron Lett. 1978, 1255-1258.(b) DeLaive, P. J.;
Sullivan, B. P.; Meyer, T. J.; Whitten, D. G. J. Am. Chem. Soc. 1979, 101,
4007-4008. (c) Van Bergen, T. J.; Hedstrand, D. M.; Kruizinga, W. H.;
Kellogg, R. M. The J. Org. Chem. 1979, 44, 4953-4962. (d) Nakamura,
K.; Fujii, M.; Mekata, H.; Oka, S.; Ohno, A. Chem. Lett. 1986, 87-88.
(e) Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am.
Chem. Soc. 2009, 131, 8756-8757. (f) Andrews, R. S.; Becker, J. J.;
Gagné, M. R. Angew. Chem. Int. Ed. 2010, 49, 7274-7276. (g) Nguyen,
J. D.; D'Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat
Chem 2012, 4, 854-859. (h) Nguyen, J. D.; Rei; Dai, C.; Stephenson, C.
R. J. Chem. Commun. 2013, 49, 4352-4354.(i) Rackl, D.; Kais, V.;
Kreitmeier, P.; Reiser, O. Beilstein J. Org. Chem. 2014, 10, 2157-2165. (j)
Hu, C.; Chen, Y. Org. Chem. Front. 2015, 2, 1352-1355. (k) Lee, J. H.;
Mho, S.-I. J. Org. Chem. 2015, 80, 3309-3314. (l) Luo, J.; Zhang, X.;
Zhang, J. ACS Catalysis 2015, 5, 2250-2254. (m) Speckmeier, E.; Padié,
C.; Zeitler, K. Org. Lett. 2015, 17, 4818-4821. (n) Sumino, S.; Ryu, I.
Org. Lett. 2016, 18, 52-55.
AUTHOR INFORMATION
Corresponding Author
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
*majing@nju.edu.cn
Notes
The authors declare no competing financial interests.
Acknowledgements
We are grateful for grants from the National Science
Foundation of China (21572099, 21332005, 21290192, 21273102),
the Natural Science Foundation of Jiangsu Province
(BK20151379), the Ph.D. Programs Foundation of the Ministry
of Education of China (20130091120047), and SRF for ROCS,
SEM. We appreciate Wenmin Wang for the assistance on the
theoretical calculations.
[7] Chen, Y.; Kamlet, A. S.; Steinman, J. B.; Liu, D. R. Nat Chem
2011, 3, 146-153.
[8] Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.;
Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735-17738.
[9] Larraufie, M.-H.; Pellet, R.; Fensterbank, L.; Goddard, J.-P.;
Lacôte, E.; Malacria, M.; Ollivier, C. Angew. Chem. Int. Ed. 2011, 50,
4463-4466.
[10] (a) Kuhn, R.; Moewus, F.; Low, I. Ber. Dtsch. Chem. Ges. B
1944, 77B, 219-220. (b) Sugimoto, N. Yakugaku Zasshi 1944, 64, 192-
197. (c) King, J. A. J. Am. Chem. Soc. 1945, 67, 1037.
[11] (a) Li, G.; Chen, R.; Wu, L.; Fu, Q.; Zhang, X.; Tang, Z. Angew.
Chem. Int. Ed. 2013, 52, 8432-8436. (b) Li, G.; Wu, L.; Lv, G.; Liu, H.;
Fu, Q.; Zhang, X.; Tang, Z. Chem. Commun. 2014, 50, 6246-6248.
[12] Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Angew. Chem. Int.
Ed. 2016, 55, 1872-1875.
[13] Li, Y.; Pouliot, M.; Vogler, T.; Renaud, P.; Studer, A. Org. Lett.
2012, 14, 4474-4477.
[14] Johnston, L. J.; Tencer, M.; Scaiano, J. C. J. Org. Chem. 1986, 51,
2806-2808.
[15] Zhu, X.-Q.; Li, H.-R.; Li, Q.; Ai, T.; Lu, J.-Y.; Yang, Y.; Cheng,
J.-P. Chem. Eur. J. 2003, 9, 871-880.
[16] Sim, B. A.; Griller, D.; Wayner, D. D. M. J. Am. Chem. Soc.
1989, 111, 754-755.
REFERENCES
[1] Peterson, E. A.; Overman, L. E. Proc. Nat. Acad. Sci. U.S.A. 2004,
101, 11943.
[2] Watson, C. G.; Balanta, A.; Elford, T. G.; Essafi, S.; Harvey, J. N.;
Aggarwal, V. K. J. Am. Chem. Soc. 2014, 136, 17370.
[3] (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev.
2011, 40, 102-113. (b) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687-
7697. (c) Xuan, J.; Xiao, W.-J. Angew. Chem. Int. Ed. 2012, 51, 6828-
6838. (d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2013, 113, 5322-5363. (e) Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc.
Rev. 2013, 42, 97-113. (f) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013,
11, 2387-2403. (g) Schultz, D. M.; Yoon, T. P. Science 2014, 343. (h)
Meggers, E. Chem. Commun. 2015, 51, 3290-3301. (i) Corcé, V.;
Chamoreau, L. M.; Derat, E.; Goddard, J. P.; Ollivier, C.; Fensterbank,
L. Angew. Chem. Int. Ed. 2015, 54, 11414-11418.
[4] For selected examples, see: (a) Hamilton, D. S.; Nicewicz, D. A.
J. Am. Chem. Soc. 2012, 134, 18577-18580. (b) Grandjean, J.-M. M.;
Nicewicz, D. A. Angew. Chem. Int. Ed. 2013, 52, 3967-3971. (c)
Griesbeck, A. G.; Kiff, A. d. Org. Lett. 2013, 15, 2073-2075. (d) Blum, T.
R.; Zhu, Y.; Nordeen, S. A.; Yoon, T. P. Angew. Chem. Int. Ed. 2014, 53,
11056-11059. (e) Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Rose, P.;
Chen, L.-A.; Harms, K.; Marsch, M.; Hilt , G.; Meggers, E. Nature
2014, 515, 100-103. (f) Meng, Q.-Y.; Lei, T.; Zhao, L.-M.; Wu, C.-J.;
Zhong, J.-J.; Gao, X.-W.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2014, 16,
5968-5971. (g) Yi, H.; Zhang, X.; Qin, C.; Liao, Z.; Liu, J.; Lei, A. Adv.
Synth. Catal. 2014, 356, 2873-2877. (h) Jeffrey, J. L.; Petronijević, F. R.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 8404-8407. (i) Li, L.;
Huang, M.; Liu, C.; Xiao, J.-C.; Chen, Q.-Y.; Guo, Y.; Zhao, Z.-G. Org.
Lett. 2015, 17, 4714-4717. (j) Furst, L.; Narayanam, J. M. R.; Stephenson,
C. R. J. Angew. Chem. Int. Ed. 2011, 50, 9655-9659. (k) Gao, X.-W.;
Meng, Q.-Y.; Xiang, M.; Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z.
Adv. Synth. Catal. 2013, 355, 2158-2164. (l) Sun, Y.; Li, R.; Zhang, W.;
Li, A. Angew. Chem. Int. Ed. 2013, 52, 9201-9204. (m) Chu, L.; Ohta, C.;
Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 10886-10889.
(n) Guo, W.; Cheng, H.-G.; Chen, L.-Y.; Xuan, J.; Feng, Z.-J.; Chen, J.-
R.; Lu, L.-Q.; Xiao, W.-J. Adv. Synth. Catal. 2014, 356, 2787-2793. (o)
Nguyen, T. H.; Morris, S. A.; Zheng, N. Adv. Synth. Catal. 2014, 356,
2831-2837.(p) Terrett, J. A.; Clift, M. D.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2014, 136, 6858-6861. (q) Zhu, Y.; Zhang, L.; Luo, S. J. Am.
[17] Fukuzumi, S.; Mochizuki, S.; Tanaka, T. J. Phys. Chem. 1990,
94, 722-726.
[18] For examples of radical-radical hetero-coupling, see: (a)
Cuthbertson, J. D.; MacMillan, D. W. C. Nature 2015, 519, 74-77. (d)
Petronijević, F. R.; Nappi, M.; MacMillan, D. W. C. J. Am. Chem. Soc.
2013, 135, 18323-18326. For persistent radical effect in radical-radical
coupling, see: (a) Studer, A. Chem. Eur. J. 2001, 7, 1159-1164. (b) A.
Studer, D. P. Curran, Angew. Chem. Int. Ed. 2016, 55, 58-102.
[19] For details about the irdium speices in the reaction, see SI,
part 8.3. For a review on the transition metal catalyssi in the
photoredox chemisty, see: Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem.
Rev. 2016, 10.1021/acs.chemrev.6b00018.
red
[20] For an comparision to 2c, the E1/2 of 2d (Talbe 1) is +1.25 V
vs SCE.
[21] Linders, J. T. M.; Willemsens, G. H. M.; Gilissen, R. A. H. J.;
Buyck, C. F. R. N.; Vanhoof, G. C. P.; Van Der Veken, L. J. E.;
Jaroskova, L. (Janssen Pharmaceutica N.V., Belg.). Preparation of
adamantyl acetamides as hydroxysteroid dehydrogenase inhibitors.
WO2004056744A1, Jul, 08, 2004.
ACS Paragon Plus Environment