10.1002/anie.201905986
Angewandte Chemie International Edition
RESEARCH ARTICLE
Zhang, J. Am. Chem. Soc. 2018, 140, 4792–4796; c) X. Cui, X. Xu, L.-
M. Jin, L. Wojtas, X. P. Zhang, Chem. Sci., 2015, 6, 1219–1224; d) C. te
Grotenhuis,B. G. Das, P. F. Kuijpers, W. Hageman, M. Trouwborst, B.
de Bruin, Chem. Sci., 2017, 8, 8221–8230; e) C.te Grotenhuis, N. van
den Heuvel, J. I. van der Vlugt, B. De Bruin, Angew. Chem. Int. Ed. 2018,
57, 140–151; Angew. Chem. 2018, 130, 146–151; f) A. S. Karns, M.
Goswami, B. de Bruin, Chem. Eur. J. 2018, 24, 5253–5258; g) X. Wen,
Y. Wang, X. P. Zhang, Chem. Sci., 2018, 9, 5082–5086; h) A. Gutierrez
Bonet, F. Julia-Hernandez, B. de Luis, R. Martin, J. Am. Chem. Soc.
2016, 138, 6384−6387; i) A. R. Reddy, C. Y. Zhou, Z. Guo, J. H. Wei, C.
M. Che, Angew. Chem. Int. Ed. 2014, 53, 14175−14180; Angew. Chem.
2014,126, 14399 –14404.
stereoselectivity is observed in the alkylation of the strong
aliphatic sites. Mechanistic studies strongly suggest that the
reactions proceed via highly reactive iron-carbene active species.
Key to its formation is the binding of the carbonyl group of the
diazoester reagent to lithium Li-O(C). Presumably, this reaction
blocks formation of unproductive Fe-O(C) species, favoring
interaction of the diazo moiety with the iron center, previous
replacement of a second lithium cation interacting with the diazo
reagent via Li-C(N), which then triggers release of nitrogen and
formation of the reactive iron-carbene in the rate determining step.
In addition these studies show a close similarities to rhodium
based carbene transfer reactions, which entail a concerted
metallocarbene insertion into the C-H bond, forming the new C-C
and C-H bonds, suggesting that the current iron based system
also operates via a C-H insertion process. Most relevant, the
current systems extend the substrate scope of iron carbene
species towards site selective alkylation of strong aliphatic C-H
bonds, opening transformations so far only accessible with
precious metals. Key to this finding is the tuning of the ligand
architecture to endorse the iron center with a highly electrophilic
character. Considering the structural versatility of this class of
ligands, and the high level of diastereoselectvity observed in the
functionalization of aliphatic sites, the development of catalyst
dependent site and enantioselective transformations, akin those
stablished for rhodium carbenes is envisioned.
[5]
[6]
a) A. Furstner, Acs Central Science 2016, 2, 778-789; b) S. Enthaler, K.
Junge, M. Beller, Angew. Chem. Int. Ed. 2008, 47, 3317-3321; c) I. Bauer,
H. J. Knolker, Chemical Reviews 2015, 115, 3170-3387.
a) P. S. Coelho,E. M. Brustad, A. Kannan, F. H. Arnold, Science 2013,
339, 307−310; b) J.-J. Shen, S.-F. Zhu, Y. Cai, H. Xu, X.-L. Xie, Q.-L.
Zhou, Angew. Chem. Int. Ed. 2014, 53, 13188-13191; Angew. Chem.
2014,126, 13404 –13407
[7]
a) V. Postils, M. Rodríguez, G. Sabenya, A. Conde, M. M. Díaz-Requejo,
P. J. Perez, M. Costas, M. Sola, J. M. Luis, ACS Catal. 2018, 8,
4313−4322; b) A. Conde, G. Sabenya, M. Rodríguez, V. Postils, J. M.
Luis, M. M. Díaz-Requejo, M. Costas, J. P. Pérez, Angew. Chem. Int. Ed.
2016, 55, 6530-6534; Angew.Chem. 2016,128,6640–6644
[8]
[9]
a) G. Sreenilayama, R. Fasan, Chem. Commun. 2015, 51, 1532-1534;
b) L. K. Baumann, H. M. Mbuvi, G. Du, L. K. Woo Organometallics, 2007,
26, 3995–4002; c) E. H. Wang, Y.-J. Ping, Z.-R. Li, H. Qin, Z.-J. Xu, C.-
M. Che, Org. Lett., 2018, 20, 4641–4644.
a) R. K. Zhang, K. Chen, X. Huang, L. Wohlschlager, H. Renata, F. H.
Arnold, Nature, 2019, 565, 67-72; b) J. R. Griffin, C.I. Wendell, J. A.
Garwin, C. M. White, J. Am. Chem. Soc. 2017, 139, 13624−13627.
Acknowledgements
[10] Y. Li, J.-S. Huang, Z.-Y. Zhou, C.-M. Che, X.-Z. You, J. Am. Chem. Soc.
2002, 124, 13185-13193.
[11] H. M. Mbuvi, L. K. Woo, Organometallics 2008, 27, 637–645.
[12] C. Tortoreto, D. Rackl, H. M. Davies, Org. Lett. 2017, 19, 770−773.
[13] a) P. R. Ortiz de Montellano, Chem. Rev. 2010, 110, 932-948; b) S.
Chakrabarty, R. N. Austin, D. Deng, J. T. Groves, J. D. Lipscomb, J. Am.
Chem. Soc. 2007, 129, 3514-3515; c) J. C. Price, E. W. Barr, T. E. Glass,
C. J. Krebs, J. Martin Bollinger, J. Am. Chem . Soc. 2003, 125, 13008 –
13009; d) K. Chen, L. Que, J. Am. Chem. Soc. 2001, 123, 6327-6337; e)
A. Company, L. Gómez, M. Güell, X. Ribas, J. M. Luis, L. Jr. Que, M.
Costas, J. Am. Chem. Soc. 2007, 129, 15766-15767.
We acknowledge the Spanish Ministry of Science CTQ2015-
70795-P (M.C.) and PGC2018-095808-B-I00 (T.P.). AHG
acknowledges the support of the Beatriu de Pinós postdoctoral
programme of the Government of Catalonia's Secretariat for
Universities and Research of the Ministry of Economy and
Knowledge and to the financial support from Marie Curie
Individual Fellowship (H2020-MSCA-IF-2017). We thank Anna
Company, for helpful discussions, and S.T.R. of U.d.G. are
acknowledged for experimental support.
[14] a) E. T. Hennessy, T. A. Betley, Science 2013, 340, 591−595; b) B. Bagh,
D. L. J. Broere, V. Sinha, P. F. Kuijpers, N. P. van Leest, B. de Bruin, S.
Demeshko, M. A. Siegler, J. I. van der Vlugt, J. Am. Chem. Soc. 2017,
139, 5117−5124.
Keywords: Iron • carbene • C-H activation
[15] a) M. M. Khusniyarov, T. Weyhermüller, E. Bill, K. Wieghardt, J. Am.
Chem. Soc. 2009, 131, 1208–1221; b) M. M. Khusniyarov, E. Bill, T.
Weyhermüller, E. Bothe, K. Harms, J. Sundermeyer, K. Wieghardt,
Chem. Eur. J. 2008, 14, 7608 – 7622.
[1]
[2]
For comprehensive reviews in C(sp3)-C(sp3) methodologies see: a) N.
Kambe, T. Iwasakia, J. Terao, Chem. Soc. Rev., 2011, 40, 4937–4947;
b) R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417–
1492; c) Z. Dong, Z. Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev.
2017, 117, 9333−9403.
[16] a) V. M. Jiménez-Pérez, M. Ibarra-Rodríguez, B. M. Muñoz-Flores, A.
Gómez, R. Santillan, E. Hernández Fernadez, S. Bernès, N. Waksman,
R. Ramírez Duron, J. Mol. Struct. 2013, 1031, 168–174; b) M. M.
Khusniyarov, K. Harms, O. Burghaus, J. Sundermeyer, B. Sarkar, W.
Kaim, J. van Slageren, C. Duboc, J. Fiedler, Dalton Trans. 2008, 1355-
1365.
a) M. M. Díaz-Requejo, A. Caballero, M. R. Fructos, P. J. Pérez, Alkane
C-H Activation by Single-Site Metal Catalysis, Springer, Amsterdam,
2012, Chap.6; b) A. Caballero, M. M. Diaz-Requejo, M. R. Fructos, A.
Olmos, J. Urbano, P. J. Perez,. Dalton Trans. 2015, 44, 20295−20307;
c) A. Caballero, P. J. Perez, Chem. Eur. J., 2017, 23, 14389-14393; d)
A. Ford, H. Miel, A. Ring, C. N. Slaterry, A. R. Maguire, M. A. McKervey,
Chem. Rev. 2015, 115, 9981 –10080; e) H. Lu, P. Zhang, Chem. Soc.
Rev. 2011, 40, 1899-1909; f) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou,
Chem. Rev. 2010, 110, 704−724.
[17] a) F. Milocco, S. Demeshko, F. Meyer, E. Otten, Dalton Trans., 2018, 47,
8817–8823; b) R. Travieso-Puente, J. O. P. Broekman, M.-C. Chang, S.
Demeshko, F. Meyer, E. Otten, J. Am. Chem. Soc. 2016, 138,
5503−5506; c) W. D. Morris, P. T. Wolczanski, J. Sutter, K. Meyer, T. R.
Cundari, E. B. Lobkovsky, Inorg. Chem. 2014, 53, 7467-7484; d) L.
Zhang, L. Xiang, Y. Yu, L. Deng, Inorg. Chem. 2013, 52, 5906-5913; e)
C: A. Nijhuis, E. Jellema, T. J. J. Sciarone, A. Meetsma, P. H. M.
Budzelaar, B. Hessen, Eur. J. Inorg. Chem. 2005, 2089-2099; f) A.
Panda, M. Stender, R. J. Wright, M. M. Olmstead, P. Klavins, P. P. Power,
Inorg. Chem. 2002, 41, 3909-3916; g) B. Vendemiati, G. Prini, A.
[3]
[4]
Y.-R. Luo, Comprehensive Handbook of Chemical Bond Ener-gies, CRC
Press, Boca Ratón, 2007.
See reference 2 and for recent examples: a) A. E. Shiely, L.-A Clarke, C.
J. Flynn, A. M. Buckley, A. Ford, S. E. Lawrence, A. R. Maguire, Eur. J.
Org. Chem., 2018, 19, 2277-2289; b) Y. Wang, X. Wen, X. Cui, X. P.
This article is protected by copyright. All rights reserved.