ORGANIC
LETTERS
2001
Vol. 3, No. 19
3017-3020
Asymmetric Synthesis of γ-Hydroxy
r,â-Unsaturated Aldehydes via
Enantioselective Direct Addition of
Propargyl Acetate to Aldehydes
Emad El-Sayed, Neel K. Anand, and Erick M. Carreira*
Laboratorium fu¨r Organische Chemie, ETH-Zentrum, UniVersita¨tstrasse 16,
CH-8092 Zu¨rich, Switzerland
Received July 13, 2001
ABSTRACT
We report the first example of enantioselective and diastereoselective aldehyde additions of propargyl acetate to aldehydes using the methodology
recently reported from our laboratories. Subsequent O-silyl protection, Pd-catalyzed isomerization, AcOH addition, and hydrolysis result in
optically active γ-hydroxy r,â-unsaturated aldehydes as powerful building blocks.
Chiral allylic alcohols are powerful building blocks for
asymmetric synthesis as they possess useful stereodirecting
influence in a number of chemical transformations such as
hydroxyl-directed epoxidations, cyclopropanations, and hy-
drogenation. The presence of a carbonyl functionality in
conjugation with a CdC bond widens the scope of applica-
tion and synthetic importance of this class of compounds to
include 1,4-additions and cyclizations.1 In this respect,
γ-hydroxy R,â-unsaturated carbonyl compounds provide
direct access to natural products, such as the oxylipins (e.g.,
constanolactones A and B)2 or hybrid antibiotics (e.g.,
decarestrictine D).3 A variety of methodologies have been
reported for the synthesis of γ-hydroxy R,â-unsaturated
carbonyl derivatives, including asymmetric dihydroxylation
and subsequent dehydration of â,γ-unsaturated carbonyl
derivatives,4 photoinduced rearrangement of R,â-epoxy di-
azomethyl ketones,5 olefination of R-hydroxy aldehydes,6 and
condensations of optically active sulfinyl acetates with
aldehydes (the “SPAC” reaction).7 Herein we report an atom-
economical process that provides ready access to optically
(1) (a) Oppolzer, W.; Radinov, R. N. J. Am. Chem. Soc. 1993, 115, 1593.
(b) Opplozer, W.; Radinov, R. N.; De Brabander, J. Tetrahedron Lett. 1995,
36, 2607. (c) Craig, D.; Reader, J. C. Tetrahedron Lett. 1992, 33, 4073. (d)
Arai, M.; Nemoto, T.; Ohashi, Y.; Nakamura, I. Synlett 1992, 309. (e)
Hanessian, S.; Di Fabio, R.; Marcoux, J.-F.; Prud’homme, M. J. Org. Chem.
1990, 55, 3436. (f) Roush, W. R.; Michaelides, M. R.; Tai, D. F.; Lesur, B.
M.; Chong, W. K. M.; Harris, D. J. J. Am. Chem. Soc. 1989, 111, 2984. (g)
Tsuda, T.; Horii, Y.; Nakagawa, Y.; Ishida, T.; Saegusa, T. J. Org. Chem.
1989, 54, 977. (h) Ziegler, F. E.; Gilligan, P. J. J. Org. Chem. 1981, 46,
3874. (i) Roush, W. R.; Lesur, B. M. Tetrahedron Lett. 1983, 23, 2231. (j)
Nemoto, H.; Ando, M.; Fukumoto, K. Tetrahedron Lett. 1990, 31, 6205.
(k) Reetz, M. T.; Ro¨hrig, D. Angew. Chem., Int. Ed. Engl. 1989, 28, 1706.
(l) Labelle, M.; Guindon, Y. J. Am. Chem. Soc. 1989, 111, 2204. (m) Ibuka,
T.; Habashita, H.; Otaka, A.; Fujii, N. J. Org. Chem. 1991, 56, 4370.
(2) (a) Barloy-Da Silva, C.; Benkouider, A.; Pale, P. Tetrahedron Lett.
2000, 41, 3077. (b) Seo, Y.; Cho, K. W.; Rho, J.-R.; Shin, J.; Kwon, B.-
M.; Bok, S.-H.; Song, J.-I. Tetrahedron 1996, 52, 10583.
(3) Dra¨ger, G.; Garming, A.; Maul, C.; Noltemeyer, M.; Thiericke, R.;
Zerlin, M.; Kirschning, A. Chem. Eur. J. 1998, 4, 1324.
(4) Bennani, Y. L.; Sharpless, K. B. Tetrahedron Lett. 1993, 34, 2083.
(5) Waanders, P. P.; Thijs, L.; Zwanenburg, B. Tetrahedron Lett. 1987,
28, 2409.
(6) (a) Maryanoff, B. E.; Reitz, A. B. Chem. ReV. 1989, 89, 863. (b)
Nuzillard, J.-M.; Boumendjel, A.; Massiot, G. Tetrahedron Lett. 1989, 30,
3779. (c) Netz, D. F.; Seidel, J. L. Tetrahedron Lett. 1992, 33, 1957.
(7) Burgess, K.; Cassidy, J.; Henderson, I. J. Org. Chem. 1991, 56, 2050.
10.1021/ol016431j CCC: $20.00 © 2001 American Chemical Society
Published on Web 08/23/2001