9900–9901; (e) S. Ge and J. F. Hartwig, J. Am. Chem. Soc., 2011,
133, 16330–16333. For a review of catalytic asymmetric a-arylations
see: (f) A. C. B. Burtoloso, Synlett, 2009, 320.
6 (a) X. Dai, N. A. Strotman and G. C. Fu, J. Am. Chem. Soc., 2008,
130, 3302–3303; (b) P. M. Lundin, J. Esquivias and G. C. Fu,
Angew. Chem., Int. Ed., 2009, 48, 154–156; (c) S. Lou and G. C. Fu,
J. Am. Chem. Soc., 2010, 132, 1264–1266; (d) P. M. Lundin and
G. C. Fu, J. Am. Chem. Soc., 2010, 132, 11027–11029; (e) E. C. Lee
and G. C. Fu, J. Am. Chem. Soc., 2007, 129, 12066–12067.
7 A. E. Allen and D. W. C. MacMillan, J. Am. Chem. Soc., 2011,
133, 4260–4263.
8 (a) J. S. Harvey, S. P. Simonovich, C. R. Jamison and D. W. C.
MacMillan, J. Am. Chem. Soc., 2011, 133, 13782–13785;
(b) A. l. Bigot, A. E. Williamson and M. J. Gaunt, J. Am. Chem.
Soc., 2011, 133, 13778–13781.
9 Z. Huang, Z. Liu and J. Zhou, J. Am. Chem. Soc., 2011, 133,
15882–15885.
Fig. 1 Proposed transition state in asymmetric protonation.
When we attempted to apply substrate 4c in an asymmetric
decarboxylative allylation we obtained an essentially racemic
product.21 This result is consistent with earlier reports by Stoltz
where an a-phenyl substrate provided low levels of enantio-
selectivity in the decarboxylative asymmetric allylation.12b
We propose that the key intermediate in this reaction is
likely to consist of a prochiral palladium enolate. One of the
ortho-methoxy groups and the t-Bu group of the ligand
combine to block the Re-face of the enolate and ensure
protonation occurs at the Si-face (Fig. 1).
10 Enantioselective arylations to form tertiary a-aryl carbamates and
ester derivatives with mono-ortho substitution on the aryl ring have
been reported, see ref. 6e and 9. It should be noted that the nature
of the carbonyl has a pronounced effect on the pKa of the a proton
and in the case of a-aryl esters is B22.7 compared to B19.7 for a-
aryl ketones. For a comparison of various a-aryl proton acidities
see: (a) F. G. Bordwell and H. E. Fried, J. Org. Chem., 1981, 46,
4327–4331; (b) F. G. Bordwell and J. A. Harrelson Jr, Can. J.
Chem., 1990, 68, 1714–1718.
11 For reviews in this area see: (a) J. T. Mohr and B. M. Stoltz,
Chem.–Asian J., 2007, 2, 1476–1491; (b) J. D. Weaver, A. Recio,
A. J. Grenning and J. A. Tunge, Chem. Rev., 2011, 111, 1846–1913.
12 (a) J. T. Mohr, D. C. Behenna, A. M. Harned and B. M. Stoltz,
Angew. Chem., Int. Ed., 2005, 44, 6924–6927; (b) D. C. Behenna,
J. T. Mohr, N. H. Sherden, S. C. Marinescu, A. M. Harned,
In summary we have reported the first catalytic asymmetric
synthesis of 8 novel and 3 previously known isoflavanones. We
have shown that this process is influenced by both the sterics
and the electronics on the a-aryl ring of the isoflavanone.
Enantioselectivities of up to 92% have been achieved for very
sterically hindered a-aryl ketones using this methodology.
We believe this method of constructing tertiary a-aryl
carbonyl centres is likely to complement existing methods
where sterically hindered substrates can lead to reduced yields
and enantioselectivites. Whereas previous methods focused on
installing the aryl ring in the enantiodetermining step, the
methodology in this report has a bulky aryl group already
present on the substrate, leading to higher levels of enantio-
discrimination in the protonation step.
K. Tani, M. Seto, S. Ma, Z. Novak, M. R. Krout,
´
R. M. McFadden, J. L. Roizen, J. A. Enquist, D. E. White,
S. R. Levine, K. V. Petrova, A. Iwashita, S. C. Virgil and
B. M. Stoltz, Chem.–Eur. J., 2011, 17, 14199–14223.
13 (a) B. M. Trost and J. Xu, J. Am. Chem. Soc., 2005, 127,
17180–17181; (b) B. M. Trost, R. N. Bream and J. Xu, Angew.
Chem., Int. Ed., 2006, 45, 3109–3112; (c) B. M. Trost, J. Xu and
M. Reichle, J. Am. Chem. Soc., 2006, 129, 282–283; (d) B. M. Trost,
J. Xu and T. Schmidt, J. Am. Chem. Soc., 2008, 130, 11852–11853.
14 (a) E. C. Burger and J. A. Tunge, Org. Lett., 2004, 6, 4113–4115;
(b) K. Chattopadhyay, R. Jana, V. W. Day, J. T. Douglas and
J. A. Tunge, Org. Lett., 2010, 12, 3042–3045.
15 (a) R. Kuwano, N. Ishida and M. Murakami, Chem. Commun.,
2005, 3951–3952; (b) M. Nakamura, A. Hajra, K. Endo and
E. Nakamura, Angew. Chem., Int. Ed., 2005, 44, 7248–7251;
(c) V. Franckevicius, J. D. Cuthbertson, M. Pickworth,
D. S. Pugh and R. J. K. Taylor, Org. Lett., 2011, 13, 4264–4267.
16 (a) J. T. Mohr, T. Nishimata, D. C. Behenna and B. M. Stoltz,
J. Am. Chem. Soc., 2006, 128, 11348–11349; (b) S. C. Marinescu,
T. Nishimata, J. T. Mohr and B. M. Stoltz, Org. Lett., 2008, 10,
1039–1042.
M.P.C. acknowledges financial support from the Higher
Education Authority’s Programme for Research in Third-level
Institutions (PRTLI), Cycle 4. We thank Prof. Brian M. Stoltz
for a helpful suggestion to test electronically deficient ligand 6.
Notes and references
1 (a) Q.-Y. Shou, R.-Z. Fu, Q. Tan and Z.-W. Shen, J. Agric. Food
Chem., 2009, 57, 6712–6719; (b) T. C. McKee, H. R. Bokesch,
J. L. McCormick, M. A. Rashid, D. Spielvogel, K. R. Gustafson,
M. M. Alavanja, J. H. Cardellina and M. R. Boyd, J. Nat. Prod.,
1997, 60, 431–438.
2 For selected examples of isoflavanone syntheses see: (a) R. B. Bradbury
and D. E. White, J. Chem. Soc., 1953, 871–876; (b) A. C. Jain and
A. Mehta, J. Chem. Soc., Perkin Trans. 1, 1986, 215–220;
(c) D. M. X. Donnelly, J.-P. Finet and B. A. Rattigan, J. Chem.
Soc., Perkin Trans. 1, 1993, 1729–1735; (d) R. Skouta and C.-J. Li,
Angew. Chem., Int. Ed., 2007, 46, 1117–1119; (e) A. V. Dubrovskiy
and R. C. Larock, Org. Lett., 2010, 12, 3117–3119.
17 For selected examples of arylation with aryllead triacetates see:
(a) D. H. R. Barton, D. M. X. Donnelly, J.-P. Finet and
P. J. Guiry, Tetrahedron Lett., 1989, 30, 1539–1542; (b) D. H. R.
Barton, D. M. X. Donnelly, J.-P. Finet and P. J. Guiry,
Tetrahedron Lett., 1990, 31, 7449–7452; (c) D. H. R. Barton,
D. M. X. Donnelly, J.-P. Finet and P. J. Guiry, J. Chem. Soc.,
Perkin Trans. 1, 1992, 1365–1375; (d) D. M. X. Donnelly, J.-P. Finet,
P. J. Guiry and K. Nesbitt, Tetrahedron, 2001, 57, 413–423.
For a comprehensive review in this area see: (e) G. I. Elliot and
J. P. Konopleski, Tetrahedron, 2001, 57, 5683.
18 For details of the reaction optimisation see ESIw.
19 H. Suginome, Bull. Chem. Soc. Jpn., 1966, 39, 409–409.
3 J. L. Vicario, D. Badı
2003, 14, 489–495.
´
a and L. Carrillo, Tetrahedron: Asymmetry,
20 See ESIw for X-ray structure.
21 Substrate 4c was applied in the asymmetric decarboxylative
allylation and despite proceeding in full conversion, was essentially
racemic.
4 A. E. Nibbs, A. L. Baize, R. M. Herter and K. A. Scheidt,
Org. Lett., 2009, 11, 4010–4013.
5 (a) J. Ahman, J. P. Wolfe, M. V. Troutman, M. Palucki and
S. L. Buchwald, J. Am. Chem. Soc., 1998, 120, 1918–1919;
(b) X. Liao, Z. Weng and J. F. Hartwig, J. Am. Chem. Soc.,
´
2007, 130, 195–200; (c) J. Garcıa-Fortanet and S. L. Buchwald,
Angew. Chem., Int. Ed., 2008, 47, 8108–8111; (d) A. M. Taylor,
R. A. Altman and S. L. Buchwald, J. Am. Chem. Soc., 2009, 131,
c
11144 Chem. Commun., 2012, 48, 11142–11144
This journal is The Royal Society of Chemistry 2012