Hui et al.
COMMUNICATION
To demonstrate the synthetic utility of this reaction,
a gram-scale (10 mmol, 1.06 g) reaction was performed
under the standard conditions. Expectedly, the 4-phenyl-
NH-1,2,3-triazole 3a was obtained in 84% yield
(Scheme 4).
Conclusions
In summary, a safe, facile and step-economic three-
component reaction of aldehydes, nitroalkanes and in-
organic NaN3 for the synthesis of 4-aryl-NH-1,2,3-tria-
zoles has been developed in the paper. NH4OAc/HOAc
plays a crucial role in the reaction. The reaction em-
ploys readily available starting materials, tolerates a
wide range of functional groups, thus providing an effi-
cient method for the synthesis of valuable NH-1,2,3-
triazoles in high to excellent yields. Further reaction
scope and applications are underway in our lab.
Scheme 4 Gram scale reaction
N
N
NH
CHO
+
standard conditions
NaN
CH NO
+
3
3
2
3a
(1.22 g, 84%)
1a
2a
(10 mmol, 1.06 g)
Acknowledgement
To further gain insights into the reaction mechanism,
nitroalkene 5a was synthesized to undergo the cycload-
dition reaction with NaN3 under the standard conditions.
As expected, the desired 4-phenyl-NH-1,2,3-triazole 3a
was obtained in 94% yield (Scheme 5). The results fur-
ther confirm the proposed reaction mechanism which is
shown in Scheme 6.[16] Firstly, the nitroolefin 5 was eas-
ily synthesized by condensation of benzaldehyde 1 and
nitroalkane 2. At the same time, the reaction between
ammonium acetate and sodium azide afforded ammo-
nium azide. Then, the nucleophilic addition of ammo-
nium azide to nitroolefin 5 afforded the intermediate 6.
An intramolecular nucleophilic cyclization of interme-
diate 6 gave the intermediate 7. Next, elimination of a
molecule of NH4NO2 generated the intermediate 8. Fi-
nally, isomerization of the intermediate 8 produced the
1,2,3-triazole 4.
This work was supported by the National Natural
Science Foundation of China (Nos. 21622203,
21472147) and the Fund of the Shanxi Province (No.
2016JM2007).
References
[1] (a) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013,
113, 4905; (b) Lau, Y. H.; Rutledge, P. J.; Watkinson, M.; Todd, M.
H. Chem. Soc. Rev. 2011, 40, 2848; (c) Roḧrig, U. F.; Majjigapu, S.
R.; Caldelari, D.; Dilek, N.; Reichenbach, P.; Ascencao, K.; Irving,
M.; Coukos, G.; Vogel, P.; Zoete, V.; Michielin, O. Bioorg. Med.
Chem. Lett. 2016, 26, 4330.
[2] For recent reviews, see: (a) Alonso, F.; Moglie, Y.; Radivoy, G. Acc.
Chem. Res. 2015, 48, 2516; (b) Thomas, J.; Jana, S.; Liekens, S.;
Dehaen, W. Chem. Commun. 2016, 52, 9236; (c) Chen, Z.; Liu, Z.;
Cao, G.; Li, H.; Ren, H. Adv. Synth. Catal. 2017, 359, 202.
[3] Selected examples, see: (a) Jia, F.-C.; Xu, C.; Zhou, Z.-W.; Cai, Q.;
Li, D.-K.; Wu, A.-X. Org. Lett. 2015, 17, 2820; (b) Xie, Y.-Y.; Wang,
Y.-C.; He, Y.; Hu, D.-C.; Wang, H.-S.; Pan, Y.-M. Green Chem. 2017,
19, 656; (c) Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Green Chem.
2014, 16, 2958; (d) Ali, A.; Corrêa, A. G.; Alves, D.; Zuker-
man-Schpector, J.; Westermann, B.; Ferreira, M. A. B.; Paixão, M.
W. Chem. Commun. 2014, 50, 11926; (e) Chen, Z.; Yan, Q.; Liu, Z.;
Xu, Y.; Zhang, Y. Angew. Chem., Int. Ed. 2013, 52, 13324; (f) Roy,
S.; Chatterjee, T.; Islam, S. M. Green Chem. 2013, 15, 2532.
[4] For recent reviews, see: (a) Johansson, J. R.; Beke-Somfai, T.; Said
Stålsmeden, A.; Kann, N. Chem. Rev. 2016, 116, 14726; (b) Wei, F.;
Wang, W.; Ma, Y.; Tung, C.-H.; Xu, Z. Chem. Commun. 2016, 52,
14188; (c) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302;
(d) Kappe, C. O.; Van der Eycken, E. Chem. Soc. Rev. 2010, 39,
1280.
Scheme 5 1,3-Dipolar cycloaddition of nitroolefin with NaN3
Scheme 6 Plausible reaction mechanism
[5] Cu-catalyzed azide-alkyne cycloaddition reactions: (a) Zhou, W.;
Zhang, M.; Li, H.; Chen, W. Org. Lett. 2017, 19, 10; (b) Bai, Y.;
Feng, X.; Xing, H.; Xu, Y.; Kim, B. K.; Baig, N.; Zhou, T.; Gewirth,
A. A.; Lu, Y.; Oldfield, E.; Zimmerman, S. C. J. Am. Chem. Soc.
2016, 138, 11077; (c) Rasina, D.; Lombi, A.; Santoro, S.; Ferlin, F.;
Vaccaro, L. Green Chem. 2016, 18, 6380; (d) Zhou, F.; Tan, C.; Tang,
J.; Zhang, Y.-Y.; Gao, W.-M.; Wu, H.-H.; Yu, Y.-H.; Zhou, J. J. Am.
Chem. Soc. 2013, 135, 10994; (e) Zhang, Y.; Li, X.; Li, J.; Chen, J.;
Meng, X.; Zhao, M.; Chen, B. Org. Lett. 2012, 14, 26; (f) Wang, D.;
Li, N.; Zhao, M.; Shi, W.; Ma, C.; Chen, B. Green Chem. 2010, 12,
2120.
[6] Ru-catalyzed azide-alkyne cycloaddition reactions: (a) Das, U. K.;
Jena, R. K.; Bhattacharjee, M. RSC Adv. 2014, 4, 21964; (b) Liu, P.
N.; Siyang, H. X.; Zhang, L.; Tse, S. K. S.; Jia, G. J. Org. Chem.
2012, 77, 5844.
[7] Ir-catalyzed azide-alkyne cycloaddition reactions: (a) Ding, S.; Jia,
G.; Sun, J. Angew. Chem., Int. Ed. 2014, 53, 1877; (b) Rasolofonja-
4
© 2017 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2017, XX, 1—5