10.1002/ejoc.202000483
European Journal of Organic Chemistry
FULL PAPER
Colourless liquid. 1H NMR (500 MHz, CDCl3): 7.22 (t, J = 7.5 Hz, 2H), 7.15
(br s, 1H), 7.13 (br d, J = 7.5 Hz, 1H), 7.06 (br d, J = 7.5 Hz, 1H), 3.76 (q,
J = 7.0 Hz, 1H), 2.54-2.42 (m, 2H), 2.35 (s, 3H), 1.52-1.46 (m, 2H), 1.39
(d, J = 7.0 Hz, 3H), 1.32-1.26 (m, 2H), 0.87 (t, J = 7.0 Hz, 3H). 13C NMR
(125 MHz, CDCl3): 138.1, 128.4, 127.8, 127.3, 123.7, 58.4, 47.4, 31.9,
23.9, 21.5, 20.4, 13.9. HRMS (ESI-Orbit trap) m/z: [M+H]+ calcd for
C13H21N+H, 192.1752; found 192.1749.
Yamamoto, ChemSusChem 2019, 12, 2936. h) M. Stratakis, I. N. Lykakis,
Synthesis 2019, 51, 2435.
[4]
[5]
A. Corma, C. Gonzalez-Arellano, M. Iglesias, F. Sanchez, Angew. Chem.
Int. Ed. 2007, 46, 7820.
L. A. Aronica, E. Schiavi, C. Evangelisti, A. M. Caporusso, P. Salvadori,
G. Vitulli, L. Bertinetti, G. Martra, J. Catal. 2009, 266, 250.
A. Psyllaki, I. N. Lykakis, M. Stratakis, Tetrahedron 2012, 68, 8724.
I. N. Lykakis, A. Psyllaki, M. Stratakis, J. Am. Chem. Soc. 2011, 133,
10426.
[6]
[7]
4-Chloro-N-(1-phenylethyl)aniline (52)
Colourless liquid. 1H NMR (500 MHz, CDCl3): 7.35-7.23 (m, 5H), 7.02 (d,
J = 7.5 Hz, 2H), 6.44 (d, J = 7.5 Hz, 2H), 4.44 (q, J = 7.5 Hz, 1H), 1.53 (d,
J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3): 145.5, 144.5, 128.9, 128.7,
127.1, 125.8, 122.1, 114.6, 53.8, 24.9. HRMS (ESI-Orbit trap) m/z: [M+H]+
calcd for C14H14ClN+H, 232.0893; found 232.0889.
[8]
[9]
G. Shore, M. G. Organ, Chem. Eur. J. 2008, 14, 9641.
Y. Ishikawa, Y. Yamamoto, N. Asao, Catal. Sci. Technol. 2013, 3, 2902.
[10] M. Kidonakis, M. Stratakis, Org. Lett. 2015, 17, 4538.
[11] H. Miura, S. Sasaki, R. Ogawa, T. Shishido, Eur. J. Org. Chem. 2018,
1858.
[12] P. Raffa, C. Evangelisti, G. Vitulli, P. Salvadori, Tetrahedron Lett. 2008,
49, 3221.
General procedure for the reduction of amides: To a dried sealed tube
containing the amide (0.2 mmol) and diethylsilane (0.4 mmol) in 0.5 mL of
dry benzene, are added at 70 oC, 40 mg of the catalyst (1 mol% in Au),
and the solution was heated for 1-3 h. Then the slurry is filtered through a
short pad of silica gel with the aid an additional 2 mL of dichloromethane,
and the volatiles are evaporated under vacuum to provide the amines,
which were purified by column chromatography. The reduction of N,N-
dimethylbenzamide was also carried out in 1 gr scale (6.7 mmol), and
amine 63 was isolated in 73% after column chromatography. This larger
scale experimental protocol was carried out in a flask equipped with a
condenser and the reductant was slowly and dropwise added into the
reaction mixture. The spectroscopic data of known products are provided
in the Supporting Information.
[13] Q. Chen, S. Tanaka, T. Fujita, L. Chen, T. Minato, Y. Ishikawa, M. Chen,
N. Asao, Y. Yamamoto, T. Jin, Chem. Commun. 2014, 50, 3344.
[14] B. S. Takale, S. Wang, X. Zhang, X. Feng, X. Yu, T. Jin, M. Bao, Y.
Yamamoto, Chem. Commun. 2014, 50, 14401.
[15] E. Vasilikogiannaki, I. Titilas, C. Gryparis, A. Louka, I. N. Lykakis, M.
Stratakis, Tetrahedron 2014, 70, 6106.
[16] a) B. S. Takale, S. M. Tao, X. Q. Yu, X. J. Feng, T. Jin, M. Bao, Y.
Yamamoto, Org. Lett. 2014, 16, 2558. b) B. S. Takale, S. Tao, X. Yu, X.
Feng, T. Jin, M. Bao, Y. Yamamoto, Tetrahedron 2015, 71, 7154.
[17] R. J. Maya, S. Poulose, J. John, R. L. Varma, Adv. Synth. Catal. 2017,
359, 1177.
[18] A. I. Carrillo, P. Llanes, M. A. Pericas, React. Chem. Eng. 2018, 3, 714.
[19] Y. Mikami, A. Noujima, T. Mitsudome, T. Mizugaki, K. Jitsukawa, K.
Kaneda, Chem. Eur. J. 2011, 17, 1768.
N-Ethylcycloheptanamine (60)
Colourless liquid. 1H NMR (500 MHz, CDCl3): 3.13-3.08 (m, 1H), 3.02 (q,
J = 7.5 Hz, 2H), 2.23-2.18 (m, 2H), 1.87-1.79 (m, 4H), 1.57-1.54 (m, 4H),
1.48 (t, J = 7.5 Hz, 3H), 1.46-1.42 (m, 2H). 13C NMR (125 MHz, CDCl3):
58.8, 39.8, 30.9, 27.6, 23.9, 11.4. HRMS (ESI-Orbit trap) m/z: [M+H]+ calcd
for C9H19Ν+H, 142.1596; found 142.1591.
[20] M. Kidonakis, M. Stratakis, Org. Lett. 2018, 20, 4086.
[21] S. Park, I. S. Lee, J. Park, Org. Biomol. Chem. 2013, 11, 395.
[22] a) M. Yan, T. Jin, Q. Chen, H. Ho, T. Fujita, L.-Y. Chen, M. Bao, M.-W.
Chen, N. Asao, Y. Yamamoto, Org. Lett. 2013, 15, 1484. b) A. Louka, C.
Gryparis, M. Stratakis, ARKIVOC 2015, iii, 38.
[23] M. Yan, T. Jin, Y. Ishikawa, T. Minato, T. Fujita, L.-Y. Chen, M. Bao, N.
Asao, M.-W. Chen, Y. Yamamoto, J. Am. Chem. Soc. 2012, 134, 17536.
[24] Ι. Saridakis, Μ. Kidonakis, M. Stratakis, ChemCatChem 2018, 10, 980.
[25] M. Kidonakis, V. Kotzabasaki, E. Vasilikogiannaki, M. Stratakis, Chem.
Eur. J. 2019, 25, 9170.
Acknowledgments
Τhe research work carried out by Anastasia Louka was supported
by the Hellenic Foundation for Research and Innovation (HFRI)
and the General Secretariat for Research and Technology
(GSRT), under the HFRI PhD Fellowship grant (GA. no.31448).
ProFI (FORTH, Heraklion, Greece) is acknowledged for obtaining
the HRMS spectra of the unknown compounds.
[26] For an additional example showing the peculiar reactivity of
a
dihydrosilane under nano Au(0) catalysis conditions, see: H. Li, H. Guo,
Z. Li, C. Wu, J. Li, C. Zhao, S. Guo, Y. Ding, W. He, Y. Li, Chem. Sci.
2018, 9, 4808.
[27] Selected review articles: a) O. Riant, N. Mostefai, J. Courmarcel,
Synthesis 2004, 2943. b) C. Deutsch, N. Krause, B. H. Lipshutz, Chem.
Rev. 2008, 108, 2916. c) R. H. Morris, Chem. Soc. Rev. 2009, 38, 2282.
d) S. C. A. Sousa, I. Cabrita, A. C. Fernandes, Chem. Soc. Rev. 2012,
41, 5641. e) D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621.
[28] a) Q. Chen, S. Tanaka, T. Fujita, L. Chen, T. Minato, Y. Ishikawa, M.
Chen, N. Asao, Y. Yamamoto, T. Jin, Chem. Commun. 2014, 50, 3344.
b) H. Miura, K. Endo, R. Ogawa, T. Shishido, ACS Catal. 2017, 7, 1543.
[29] For a recent review article on the reductive amination, see: O. I.
Afanasyev, E. Kuchuk, D. L. Usanov, D. Chusov, Chem. Rev. 2019, 119,
11857.
Keywords: Diethylsilane • Au nanoparticles • Heterogeneous
catalysis • Reduction of carbonyl compounds, imines and amides
• N-Arylisoindolines
[1]
[2]
[3]
a) J. Y. Corey, Chem. Rev. 2016, 116, 11291. b) J. M. Asensio, D.
Bouzouita, P. W. N. M. van Leeuwen, B. Chaudret, Chem. Rev. 2020,
120, 1042.
Selected examples: a) H. Ito, T. Yajima, J. Tateiwa, A. Hosomi, Chem.
Commun. 2000, 981. b) N. Debono, M. Iglesias, F. Sanchez, Adv. Synth.
Catal. 2007, 349, 2470.
[30] B. S. Takale, X. Feng, Y. Lu, M. Bao, T. Jin, T. Minato, Y. Yamamoto, J.
Am. Chem. Soc. 2016, 138, 10356.
[31] For a typical example, see: D. Gnanamgari, A. Moores, E. Rajaseelan,
R. H. Crabtree, Organometallics 2007, 26, 1226.
Selected review articles: a) M. Stratakis, H. Garcia, Chem. Rev. 2012,
112, 4469. b) Y. Zhang, X. Cui, F. Shi, Y. Deng, Chem. Rev. 2012, 112,
2467. c) T. Mitsudome, K. Kaneda, Green Chem. 2013, 15, 2636. d) B.
S. Takale, M. Bao, Y. Yamamoto, Org. Biomol. Chem. 2014, 12, 2005.
e) X. Liu, L. He, Y.-M. Liu, Y. Cao, Acc. Chem. Res. 2014, 47, 793. f) B.
S. Takale, M. Bao, Y. Yamamoto, A. I. Almansour, N. Arumugam, R. S.
Kumar, Synlett 2015, 26, 2355. g) T. Jin, M. Terada, M. Bao, Y.
[32] a) I. Sovic, S. Kraljevic Pavelic, E. Markova-Car, N. Ilic, R. Nhili, S.
Depauw, M.-H. David-Cordonnier, G. Karminski-Zamola, Eur. J. Med.
Chem. 2014, 87, 372. b) I. Takahashi, R. Miyamoto, K. Nishiuchi, M.
Hatanaka, A. Yamano, A. Sakushima, S. Hosoi, Heterocycles 2004, 63,
1267.
[33] K. Speck, T. Magauer, Beilstein J. Org. Chem. 2013, 9, 2048.
This article is protected by copyright. All rights reserved.