12712
J. Am. Chem. Soc. 2001, 123, 12712-12713
Scheme 1
A Synthetic Membrane-Anchored Antigen Efficiently
Promotes Uptake of Antifluorescein Antibodies and
Associated Protein A by Mammalian Cells
Stephen L. Hussey, Enfei He, and Blake R. Peterson*
Department of Chemistry
The PennsylVania State UniVersity
UniVersity Park, PennsylVania 16802
a 2-Nitrobenzenesulfonyl chloride, DIEA, 0 °C, 1 h. b BrCH2CO2t-
Bu, K2CO3, DMF, 85 °C, 12 h. c HCO2H/Et2O (1:1), 65 °C, 3 h. d SOCl2,
CH2Cl2, reflux, 2 h. e 5-Aminofluorescein (NH2-Fl), THF, 25 °C, 3 h.
f PhSH, K2CO3, DMF, 25 °C, 12 h.
ReceiVed September 14, 2001
The efficient delivery of small molecules, proteins, and DNA
to living cells is critical for the effectiveness of therapeutics and
molecular probes. Although most small-molecule drugs enter cells
though passive diffusion across low-polarity cell membranes,
macromolecules are typically not cell-permeable and require
specific active transport mechanisms to gain access to intracellular
receptors.1 The cellular uptake of both natural and nonnatural
molecules can be enhanced by numerous methods including
modification with cationic peptides,2 proteins,3 peptoids,4 and
lipids,5 encapsulation with liposomes,6 dendrimers,7 and sidero-
phores,8 and complexation with cationic polymers.9 The efficiency
of these methods varies substantially, however, and improved
methods that enhance the cellular uptake of macromolecules are
needed in diverse areas from basic cell biology to drug delivery
and genetic therapy.
membranes.11 5-Aminofluorescein was incorporated to provide a
fluorescent tag bearing high affinity for antifluorescein immu-
noglobulins (IgG) (e.g. Kd ) 0.7 nM for monoclonal antifluo-
rescein 4-4-20 binding to fluorescein-biotin). This system was
chosen for investigation because molecular recognition between
fluorescein and antifluorescein IgG proteins has been extensively
characterized by structural,12 computational,13 spectroscopic,14
kinetic,13,14 thermodynamic,15 and mutagenic16 methods. Further-
more, studies of antifluorescein IgG proteins bound to fluorescein-
conjugated lipids on model biomembrane monolayers, bilayers,
and vesicles have been described.17
Compound 1 was prepared as shown in Scheme 1 from 3â-
cholesterylamine (2), which was synthesized following a previ-
ously reported method.18 To determine whether 1 interacts with
cellular plasma membranes, compound-treated Jurkat lymphocytes
were examined by epifluorescence microscopy. Treatment of cells
with 1 (10 µM) revealed intense green fluorescence at the
periphery of 100% of living cells (Figure 1B). This staining pattern
was analyzed by comparison with cells bearing red fluorescent
plasma membranes from treatment with sulfosuccinimidyl biotin,
which acylates amino groups on the cell surface, followed by
addition of cell-impermeable texas red-conjugated streptavidin.19
Comparison of red and green fluorescence confirmed that 1 is
persistently and nearly exclusively localized at the cellular plasma
membrane (compare Figure 1, parts B and D).
The avidity of antifluorescein IgG for 1 in cellular plasma
membranes was assessed by the addition to cells of nonfluorescent
IgG complexed with red fluorescent conjugates of commercially
available Protein A (PrA) from Staphlococcus aureus. PrA
comprises a 57 kDa protein that binds to the invariant Fc fragment
of rabbit-derived IgG proteins with a dissociation constant of ca.
60 nM.20 Pretreatment of cells with 1 followed by addition of
rabbit polyclonal antifluorescein IgG and Alexa Fluor-594-
conjugated PrA afforded red fluorescence at the plasma membrane
of 100% of living cells within 10 min of addition of the IgG-PrA
complex (Figure 1G).
We describe here a novel synthetic ligand (1), termed a
“memtigen” (membrane-anchored antigen), that enables dose-
dependent uptake of proteins by mammalian cells as a conse-
quence of non-covalent interactions at cellular plasma membranes.
Compound 1 is a derivative of cholesterol designed to function
as a fluorescent membrane anchor with high affinity for both
cellular plasma membranes and commercially available antifluo-
rescein antibodies. 3â-Cholesterylamine was employed as the
membrane anchor component because cholesterol is an abundant
membrane-associated steroid,10 and protonated amines such as
the headgroup of 1 favorably interact with anionic phospholipids
under physiological conditions to increase affinity for plasma
(1) Smith, D. A.; van de Waterbeemd, H. Curr. Opin. Chem. Biol. 1999,
3, 373-378.
(2) Schwarze, S. R.; Ho, A.; Vocero-Akbani, A.; Dowdy, S. F. Science
1999, 285, 1569-1572.
(3) (a) Lindgren, M.; Hallbrink, M.; Prochiantz, A.; Langel, U. Trends
Pharmacol. Sci. 2000, 21, 99-103. (b) Walev, I.; Bhakdi, S. C.; Hofmann,
F.; Djonder, N.; Valeva, A.; Aktories, K.; Bhakdi, S. Proc. Natl. Acad. Sci.
U.S.A. 2001, 98, 3185-3190. (c) Lu, Y.; Friedman, R.; Kushner, N.; Doling,
A.; Thomas, L.; Touzjian, N.; Starnbach, M.; Lieberman, J. Proc. Natl. Acad.
Sci. U.S.A. 2000, 97, 8027-8032.
(11) Roy, M. O.; Leventis, R.; Silvius, J. R. Biochemistry 2000, 39, 8298-
8307.
(12) (a) Herron, J. N.; Terry, A. H.; Johnston, S.; He, X. M.; Guddat, L.
W.; Voss, E. W., Jr.; Edmundson, A. B. Biophys. J. 1994, 67, 2167-2183.
(b) Whitlow, M.; Howard, A. J.; Wood, J. F.; Voss, E. W., Jr.; Hardman, K.
D. Protein Eng. 1995, 8, 749-761.
(4) Wender, P. A.; Mitchell, D. J.; Pattabiraman, K.; Pelkey, E. T.;
Steinman, L.; Rothbard, J. B. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 13003-
13008.
(13) Lim, K.; Herron, J. N. Biochemistry 1995, 34, 6962-6974.
(14) Lim, K.; Jameson, D. M.; Gentry, C. A.; Herron, J. N. Biochemistry
1995, 34, 6975-6984.
(5) (a) Rait, A.; Pirollo, K.; Will, D. W.; Peyman, A.; Rait, V.; Uhlmann,
E.; Chang, E. H. Bioconjug. Chem. 2000, 11, 153-160. (b) Bendas, G.
BioDrugs 2001, 15, 215-224.
(15) Herron, J. N.; Kranz, D. M.; Jameson, D. M.; Voss, E. W., Jr.
Biochemistry 1986, 25, 4602-4609.
(16) Denzin, L. K.; Gulliver, G. A.; Voss, E. W., Jr. Mol. Immunol. 1993,
30, 1331-1345.
(6) Rui, Y. J.; Wang, S.; Low, P. S.; Thompson, D. H. J. Am. Chem. Soc.
1998, 120, 11213-11218.
(17) (a) Ahlers, M.; Grainger, D. W.; Herron, J. N.; Lim, K.; Ringsdorf,
H.; Salesse, C. Biophys. J. 1992, 63, 823-838. (b) Ahlers, M.; Mu¨ller, W.;
Reichert, A.; Ringsdorf, H.; Venzmer, J. Angew. Chem., Int. Ed. Engl. 1990,
29, 1269-1285.
(7) Kono, K.; Liu, M.; Frechet, J. M. Bioconjug. Chem. 1999, 10, 1115-
1121.
(8) Ghosh, A.; Ghosh, M.; Niu, C.; Malouin, F.; Moellmann, U.; Miller,
M. J. Chem. Biol. 1996, 3, 1011-1019.
(9) Murphy, J. E.; Uno, T.; Hamer, J. D.; Cohen, F. E.; Dwarki, V.;
Zuckermann, R. N. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 1517-1522.
(10) Brown, M. S.; Goldstein, J. L. Angew. Chem., Int. Ed. Engl. 1986,
25, 583-602.
(18) Kan, C. C.; Yan, J.; Bittman, R. Biochemistry 1992, 31, 1866-1874.
(19) Wojda, U.; Goldsmith, P.; Miller, J. L. Bioconj. Chem. 1999, 10,
1044-1050.
(20) Cedergren, L.; Andersson, R.; Jansson, B.; Uhlen, M.; Nilsson, B.
Protein Eng. 1993, 6, 441-448.
10.1021/ja017087o CCC: $20.00 © 2001 American Chemical Society
Published on Web 11/22/2001