4804 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 16
Letters
(6) For reviews covering published and patented CCR2 antagonists, see
refs 1b and 3b and the following: (a) Yang, L.; Zhou, C.; Guo, L.;
Morriello, G.; Butora, G.; Pasternak, A.; Parsons, W. H.; Mills, S.
G.; MacCoss, M.; Vicario, P. P.; Zweerink, H.; Ayala, J. M.; Goyal,
S.; Hanlon, W. A.; Cascieri, M. A.; Springer, M. S. Discovery of
3,3-bis(trifluoromethyl)benzyl L-arylglycinamide based potent CCR2
antagonists. Bioorg. Med. Chem. Lett., in press. (b) Forbes, I. T.;
Cooper, D. G.; Dodds, E. K.; Hickey, D. M. B.; Ife, R. J.; Meeson,
M.; Stockley, M.; Berkhout, T. A.; Gohil, J.; Groot, P. H. E.; Moores,
K. CCR2b receptor antagonists: conversion of a weak HTS hit to a
potent lead compound. Bioorg. Med. Chem. Lett. 2000, 10, 1803-
1806. (c) Baba, M.; Nishimura, O.; Kanzaki, N.; Okamoto, M.;
Sawada, H.; Iizawa, Y.; Shuraishi, M.; Aramaki, Y.; Okonogi, K.;
Ogawa, Y.; Meguro, K.; Fulino, M. A small-molecule, nonpeptide
CCR5 antagonist with highly potent and selective anti-HIV-1 activity.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5698-5703. (d) Kettle, J.
G.; Faull, A. W.; Barker, A. J.; Davies, D. H.; Stone, M. A.
N-Benzylindole-2-carboxylic acids: potent functional antagonists of
the CCR2b chemokine receptor. Bioorg. Med. Chem. Lett. 2004, 14,
405-408. (e) Mirzadegan, T.; Diehl, F.; Ebi, B.; Bhakta, S.; Polsky,
I.; McCarley, D.; Mulkins, M.; Weatherhead, G. S.; Lapierre, J.-M.;
Dankwardt, J.; Morgans, D., Jr.; Wilhelm, R.; Jarnagin, K. Identifica-
tion of the binding site for a novel class of CCR2b chemokine
receptor antagonists. J. Biol. Chem. 2000, 275 (33), 25562-25571.
(7) Radioligand competition binding assay: CHO cells expressing human
CCR2b. Assay experimental details provided in Supporting Informa-
tion.
(8) (a) Finke, P. A.; Meurer, L. C.; Oates, B.; Mills, S. G.; MacCoss,
M.; Malkowitz, L.; Springer, M. S.; Daugherty, B. L.; Gould, S. L.;
DeMartino, J. A.; Siciliano, S. J.; Carella, A.; Carver, G.; Holmes,
K.; Danzeinsen, R.; Hazuda, D.; Kessler, J.; Lineberger, J.; Miller,
M.; Schleif, W. A.; Emini, E. A. Antagonists of the human CCR5
receptor as anti-HIV-1 agents. Part 2: structure-activity relationships
for substituted 2-aryl-1-[N-(methyl)-N-(phenylsulfonyl)amino]-4-
(piperidin-1-yl)butanes. Bioorg. Med. Chem. Lett. 2001, 11, 265-
270. (b) Finke, P. A.; Oates, B.; Mills, S. G.; MacCoss, M.;
Malkowitz, L.; Springer, M. S.; Gould, S. L.; DeMartino, J. A.;
Carella, A.; Carver, G.; Holmes, K.; Danzeinsen, R.; Hazuda, D.;
Kessler, J.; Lineberger, J.; Miller, M.; Schleif, W. A.; Emini, E. A.
Antagonists of the human CCR5 receptor as anti-HIV-1 agents. Part
4: synthesis and structure-activity relationships for 1-[N-(methyl)-
N-(phenylsufonyl)amino]-2-(phenyl)-4-(4-(N-(alkyl)-N-(benzyloxy-
carbonyl)amino)piperidin-1-yl)butanes. Bioorg. Med. Chem. Lett.
2001, 11, 2475-2479.
and excellent overall pharmacokinetic characteristics (F ) 38%,
AUCpo ) 1.8 µM h kg mg-1, Cl ) 6 mL min-1 kg-1, t1/2 ) 8
h).
In summary, through modification of a screening lead from
our sample collection, we have discovered a structurally distinct
new lead, 11, which has subsequently served as the departure
point for an ongoing program targeting CCR2 antagonists.
Compound 11 was optimized by modifications to the 4-phe-
nylpiperidine moiety to spiroindenylpiperidine analogue 26 and
ultimately to trans-3-methyl-4,4′-spiroindenylpiperidine ana-
logue 37, which was potent in our CCR2 binding assay (IC50
) 59 nM) and in a functional assay measuring inhibition of
MCP-1 induced monocyte chemotaxis (IC50 ) 41 nM). CCR2
antagonists 11, 26, and 37 were selective against all other
chemokine receptors assayed with the exception of the CCR5
receptor where they had similar potency. All three compounds
also showed binding affinity for the NK1 receptor. Compound
26 had good oral bioavailability in rats. Subsequent reports from
our laboratories will detail further SAR studies in this series
that address enhancing potency and selectivity against NK1 and
CCR5.14
Acknowledgment. We thank Marc M. Kurtz and Kwei-Lan
C. Tsao for performing the NK1 assays on 11, 26, and 37, and
Bernard Kartsen Choi for HRMS analyses.
Supporting Information Available: Experimental details for
the synthesis and characterization of representative CCR2 antago-
nists 11, 26, and 37. This material is available free of charge via
References
(1) (a) Bachmann, M. F.; Kopf, M.; Marsland, B. J. Chemokines: more
than just road signs. Nat. ReV. Immunol. 2006, 6, 159-164. (b) Gao,
Z.; Metz, W. A. Unraveling the Chemistry of chemokine receptor
ligands. Chem. ReV. 2003, 103, 3733-3752.
(2) Charo, I. F.; Myers, S. J.; Herman, A.; Franci, F.; Connolly, A. J.;
Coughlin, S. R. Molecular cloning and functional expression of two
monocyte chemoattractant protein 1 receptors reveals alternative
splicing of the carboxyl-terminal tails. Proc. Natl. Acad. Sci. U.S.A.
1994, 91, 2752-2756.
(9) Hale, J. J.; Finke, P. E.; MacCoss, M. A facile synthesis of the novel
neurokinin A antagonist SR 48968. Bioorg. Med. Chem. Lett. 1993,
3, 319-322.
(3) (a) Rollins, B. Monocyte chemoattractant protein 1: a potential
regulator of monocyte recruitment in inflammatory disease. J. Mol.
Med. Today 1996, 2, 198-204. (b) Feria, M.; Diaz-Gonzalez, F. The
CCR2 receptor as a therapeutic target. Expert Opin. Ther. Pat. 2006,
16, 49-57. (c) Saunders, J.; Tarby, C. M. Opportunities for novel
therapeutic agents acting at chemokine receptors. Drug DiscoVery
Today 1999, 4, 80-92.
(4) (a) Koch, A. E.; Kunkel, S. L.; Harlow, L. A.; Johnson, B.; Evanoff,
H. L.; Haines, G. K.; Burdick, M. D.; Pope, R. M.; Strieter, R. M.
Enhanced production of monocyte chemoattractant protein-1 in
rheumatoid arthritis. J. Clin. InVest. 1992, 90, 772-779. (b) Loet-
scher, P.; Dewald, B.; Baggiolini, M.; Seitz, M. Monocyte chemoat-
tractant protein 1 and interleukin 8 production by rheumatoid
synoviocytes. Effects of antirheumatic drugs. Cytokine 1994, 6, 162-
170. (c) Ruth, J. H.; Rottman, J. B.; Katschke, K. J., Jr.; Qin, S.;
Wu, L.; LaRosa, G.; Ponath, P.; Pope, R. M.; Koch, A. E. Selective
lymphocyte chemokine receptor expression in the rheumatoid joint.
Arthritis Rheum. 2001, 44, 2750-2760.
(10) Russell, M. G. N.; Baker, R.; Billington, D. C.; Knight, A. K.;
Middlemiss, D. N.; Noble, A. J. Benz[f]isoquinoline analogs as high-
affinity σ ligands. J. Med. Chem., 1992, 35 (11), 2025-2033.
(11) Evans, B. E.; Leighton, J. K.; Rittle, K. E.; Gilbert, K. F.; Lundell,
G. F.; Gould, N. P.; Hobbs, D. W.; DiPardo, R. M.; Veber, D. F.;
Pettibone, D. J.; Clinesschmidt, B. V.; Anderson, P. S.; Freidinger,
R. M. Orally active, nonpeptide oxytocin antagonists. J. Med. Chem.
1992, 35, 3919-3927.
(12) The required spiroindenylpiperidine was prepared in an analogous
fashion to that shown in Scheme 2 starting with 1,2-epoxybutane.
(13) Human monocyte chemotaxis assay: details provided in Supporting
Information. Known CCR2 antagonist 1-(3,4-dichlorobenzyl)-5-
hydroxy-1H-indole-2-carboxylic acid was calculated to have an IC50
of 95 nM in this assay, in good agreement with the reported value
of 60 nM (Faull, A. W.; Kettle, J. G. WO 2000046196, 2000).
(14) Subsequent publications from our group will detail next-generation
CCR2 antagonists derived from 37 wherein the central p-fluorophenyl
has been replaced/modified and/or the γ-aminoamide core has been
cyclized. Their improved selectivity for CCR2 over the CCR5 and
NK1 receptors and their favorable pharmacokinetic properties will
be described.
(5) (a) Gosling, J.; Slaymaker, S.; Gu, L.; Tseng, S.; Zlot, C. H.; Young,
S. G.; Rollins, B. J.; Charo, I. F. MCP-1 deficiency reduces
susceptibility to atherosclerosis in mice that overexpress human
apolipoprotein B. J. Clin. InVest. 1999, 103, 773-778. (b) Boring,
L.; Gosling, J.; Cleary, M.; Charo, I. F. Decreased lesion formation
in CCR2-/- mice reveals a role for chemokines in the initiation of
atherosclerosis. Nature 1998, 394, 894-897.
(15) Refer to ref 9 for details about the CCR5 binding assay.
JM060439N