Angewandte
Chemie
examples, see: b) G. Byk, C. Dubertret, V. Escriou, M. Frederic,
effective than the G1 analogue under high-salt conditions,
whilst G1 was, in turn, significantly more effective than the
G0 analogue. It can be concluded that the expression of
multiple spermine units, natureꢀs own DNA binder, on the
surface of a dendritic scaffold offers a powerful approach for
achieving high-affinity DNA binding under physiological
conditions. These molecules have potential for further
synthetic variation, and in current and future work, we will
be investigating the effect of structural modifications on DNA
binding and nanoscale assembly, as well as looking at
applications of the novel dendritic constructs in gene protec-
tion and delivery.
G. Jaslin, R. Rangara, B. Pitard, J. Crouzet, P. Wils, B. Schwartz,
D. Scherman, J. Med. Chem. 1998, 41, 224 – 235; c) A. J. Geall,
M. A. W. Eaton, T. Baker, C. Catterall, I. S. Blagbrough, FEBS
Lett. 1999, 459, 337 – 342; d) G. Ronsin, C. Perrin, P. Guꢁdat, A.
Kremer, P. Camilleri, A. J. Kirby, Chem. Commun. 2001, 2234 –
2235; e) C. Boulanger, C. Di Giorgio, J. Gaucheron, P. Vierling,
Bioconjugate Chem. 2004, 15, 901 – 908; f) T. Dewa, Y. Ieda, K.
Morita, L. Wang, R. C. MacDonald, K. Iida, K. Yamashita, N.
Oku, M. Nango, Bioconjugate Chem. 2004, 15, 824 – 830.
[13] a) N. Korolev, A. P. Lyubartsev, L. Nordenskiꢃld, A. Laaksonen,
J. Mol. Biol. 2001, 308, 907 – 917; b) Y. Burak, G. Ariel, D.
Andelman, Curr. Opin. Colloid Interface Sci. 2004, 9, 53 – 58.
[14] H. G. Abdelhady, S. Allen, M. C. Davies, C. J. Roberts, S. J. B.
Tendler, P. M. Williams, Nucleic Acids Res. 2003, 31, 4001 – 4005.
[15] a) T. Azzam, H. Eliyahu, A. Makovitzki, M. Linial, A. J. Domb,
J. Controlled Release 2004, 96, 309 – 323; b) H. Hosseinkhani, T.
Azzam, Y. Tabata, A. J. Domb, Gene Ther. 2004, 11, 194 – 203.
[16] a) G. R. Newkome, X. Lin, Macromolecules 1991, 24, 1443 –
1444; b) G. R. Newkome, X. Lin, C. D. Weis, Tetrahedron:
Asymmetry 1991, 2, 957 – 960; c) J. K. Young, G. R. Baker, G. R.
Newkome, K. F. Morris, C. S. Johnson, Jr., Macromolecules
1994, 27, 3464 – 3471; d) J.-F. Nierengarten, T. Habicher, R.
Kessinger, F. Cardullo, F. Diederich, V. Gramlich, J.-P. Gissel-
brecht, C. Boudon, M. Gross, Helv. Chim. Acta 1997, 80, 2238 –
2276.
Received: January 7, 2005
Published online: March 22, 2005
Keywords: dendrimers · DNA · multivalency · nanochemistry ·
.
self-assembly
[1] a) G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418 –
2421; b) I. W. Hamley, Angew. Chem. 2003, 115, 1730 – 1752;
Angew. Chem. Int. Ed. 2003, 42, 1692 – 1712.
[2] a) D. K. Smith, A. R. Hirst, C. S. Love, J. G. Hardy, S. V.
Brignell, B. Huang, Prog. Polym. Sci. 2005, in press; b) D. K.
Smith, F. Diederich, Top. Curr. Chem. 2000, 210, 183 – 227;
c) J. M. J. Frꢁchet, Proc. Natl. Acad. Sci. USA 2002, 99, 4782 –
4787; d) P. J. Gittins, L. J. Twyman, Supramol. Chem. 2003, 15, 5 –
23.
[3] a) S. Borman, Chem. Eng. News 2000, 78(41), 48 – 53; b) R. J.
Pieters, Trends Glycosci. Glycotechnol. 2004, 16, 243 – 254;
c) T. K. Lindhorst, Top. Curr. Chem. 2002, 218, 201 – 235; d) for
a thermodynamic model, see: P. I. Kitov, D. R. Bundle, J. Am.
Chem. Soc. 2003, 125, 16271 – 16284.
[17] C. M. Cardona, R. E. Gawley, J. Org. Chem. 2002, 67, 1411 –
1413.
[18] I. S. Blagbrough, A. J. Geall, Tetrahedron Lett. 1998, 39, 439 –
442.
[19] a) B. F. Cain, B. C. Baguley, W. A. Denny, J. Med. Chem. 1978,
21, 658 – 668; b) H. Gershon, R. Ghirlando, S. B. Guttman, A.
Minsky, Biochemistry 1993, 32, 7143 – 7151.
[20] Charge excess is defined as the nominal “number of positive
charges” of the polyamine divided by the “number of negative
charges” present on the DNA.
A molecular weight of
660 gmolÀ1 per base pair and one negative charge per nucleotide
were assumed.
[4] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, T. H. LaBean,
Science 2003, 301, 1882 – 1884.
[5] a) I. M. Verma, N. Somia, Nature 1997, 389, 239 – 242; b) D. Luo,
M. Saltzmann, Nat. Biotechnol. 2000, 18, 33 – 37; c) T. Merdan, J.
Kopecek, T. Kissel, Adv. Drug Delivery Rev. 2002, 54, 715 – 758.
[6] a) J. Dennig, Top. Curr. Chem. 2003, 228, 227 – 236; b) S. E.
Stiriba, H. Frey, R. Haag, Angew. Chem. 2002, 114, 1385 – 1390;
Angew. Chem. Int. Ed. 2002, 41, 1329 – 1334.
[7] a) J. Haensler, F. C. Szoka, Bioconjugate Chem. 1993, 4, 372 –
379; b) J. F. Kukowska-Latallo, A. U. Bielinska, J. Johnson, R.
Spindler, D. A. Tomalia, J. R. Baker, Proc. Natl. Acad. Sci. USA
1996, 93, 4897 – 4902; c) M. X. Tang, C. T. Redemann, F. C.
Szoka, Bioconjugate Chem. 1996, 7, 703 – 714; d) M. F. Ottaviani,
F. Furini, A. Casini, N. J. Turro, S. Jockusch, D. A. Tomalia, L.
Messori, Macromolecules 2000, 33, 7842 – 7851; e) J. H. Lee,
Y. B. Lim, J. S. Choi, Y. Lee, T.-i. Kim, H. J. Kim, J. K. Yoon, K.
Kim, J. S. Park, Bioconjugate Chem. 2003, 14, 1214 – 1221.
[8] a) J. S. Choi, D. K. Joo, C. H. Kim, K. Kim, J. S. Park, J. Am.
Chem. Soc. 2000, 122, 474 – 480; b) M. Ohsaki, T. Okuda, A.
Wada, T. Hirayama, T. Niidome, H. Aoyagi, Bioconjugate Chem.
2002, 13, 510 – 517.
[9] B. H. Zinselmeyer, S. P. Mackay, A. G. Schꢂtzlein, I. F. Uchegbu,
Pharm. Res. 2002, 19, 960 – 967.
[10] D. Joester, M. Losson, R. Pugin, H. Heinzelmann, E. Walter,
H. P. Merkle, F. Diederich, Angew. Chem. 2003, 115, 1524 – 1528;
Angew. Chem. Int. Ed. 2003, 42, 1486 – 1490.
[11] a) C. W. Tabor, H. Tabor, Annu. Rev. Biochem. 1984, 740 – 790;
b) V. Vijayanathan, T. Thomas, A. Shirahata, T. J. Thomas,
Biochemistry 2001, 40, 13644 – 13651.
[12] For an overview, see: a) I. S. Blagbrough, A. J. Geall, A. P. Neal,
Biochem. Soc. Trans. 2003, 31, 397 – 406; for further selected
Angew. Chem. Int. Ed. 2005, 44, 2556 –2559
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2559