C. E. S. ALVARO, A. D. AYALA AND N. S. NUDELMAN
2,4-dinitrofluorobenzene, (DNFB, Merck), was distilled at
reduced pressure under nitrogen (b.p. 122–123 8C at 5 mmHg,
lit,[62] 119 8C at 2 mmHg) and was kept in a desiccator protected
from light under dry nitrogen atmosphere.
from the application of Beer’s law to solutions of the product
independently prepared in the desired solvent. In all cases,
pseudo-first-order kinetics were observed. Pseudo-first-order
coefficients, kC, were obtained by the least-squared method as
1-N-(2-benzimidazol)-3-N-(2,4-dinitrophenyl)guanidine, N-(2,4-
dinitrophenyl)-1-(2-aminoethyl)piperidine and N-(2,4-dinitropheny)-
N-(3-aminopropyl)morpholine were prepared from 2,4-
dinitrochlorobenzene and 2-guanidinobenzimidazole, N-(3-
aminopropyl)morpholine and 1-(2-aminoethyl)piperidine, respect-
ively, following the general procedure reported for N-(2,4-
dinitrophenyl)-2-methoxyaniline.[63] In all cases, the compounds
were obtained in almost quantitative yields as dark orange, the
former, and yellow crystals the other two products, respectively.
[1-N-(2-benzimidazol)-3-N-(2,4-dinitrophenyl)guanidine (mp 218–
the slope of the correlation ln (A1 ꢁ At)/A against time, where
1
is the optical density of the reaction mixture measured at
A
1
‘infinity’ (more than ten half-lives). The second-order rate
coefficients, kA, were obtained by dividing kC by the amine
concentrations. Rate coefficients were reproducible to ꢀ 2%. No
corrections for expansion coefficients were applied to the
concentration values.
Acknowledgements
1
220 8C), H NMR (DMSO-d6): d 11.12 (s, 1H), 9.03 (s, 1H), 8.25 (d,
The authors gratefully acknowledged financial support from the
Universidad Nacional del Comahue (grant no. I123-UNCo) and
from the National Research Council (CONICET) from Argentina
(grant no. PIP 6019).
1H), 7.20 (m, 2H), 7.10 (d, 1H), 6.92 (m, 2H), 2.30 (s, 1H), 2.10 (s, 2H). 13
C
NMR (DMSO-d6): d 160.00, 152.00, 149.90, 148.48, 147.80, 140.80,
128.87, 125.80, 123.70, 121.30, 120.30, 119.34, 114.34, 110.20. IR (KBr)
ncmꢁ1: 3439 and 3196 (N—H),. 1640 (N—H) and (NH2), 1626
—
(C N), 1510, (NO2), 1340, (NO2), 780 (NH2)]. [N-(2,4-
—
dinitrophenyl)-1-(2-aminoethyl)piperidine (mp 122–123 8C), 1H
REFERENCES
NMR (CDCl3): d 9.04 (s, 1H), 8.15 (d, 1H), 6.81 (d, 1H), 3.36 (t, 2H),
.
2.63 (t, 2H), 2.40 (t, 4H), 1.49 (m, 6H), 1.02 (s, 1H) 13C RMN (CDCl3) d
[1] N. S. Nudelman, The Chemistry of Amino, Nitroso, Nitro and Related
Groups, Ch. 29 (Ed: S. Patai), Wiley J & Sons Ltd, London, 1996,
1215–1300.
[2] N. S. Nudelman, J. Phys. Org. Chem. 1989, 2, 1–14.
[3] E. Buncel, J. M. Dust, F. Terrier, Chem. Rev. 1995, 95, 2261 and
references therein.
150.91, 148.50, 147.15, 131.52, 120.77, 115.34, 49.70, 47.90, 43.80,
27.80, 25.90. IR (KBr) n cmꢁ1: 3480 (N—H), 1530 (N—H), 1540 and
1380, (NO2)]. [N-(2,4-dinitrophenyl)-N-(3-aminopropyl)morpholine
1
(mp 145–146 8C) H NMR (CDCl3): d 9.02 (s, 1H), 8.30 (d, 1H), 7.20
(d, 1H), 3.61 (t, 4H), 3.07 (t, 2H), 2.85 (t, 2H), 2.21 (t, 4H), 2.00 (s, 1H),
1.80 (m, 2H).13C NMR (CDCl3): d 150.91, 148.50, 147.15, 131.52,
120.77, 115.34, 68.10, 51.40, 46.70, 39.90. IR (KBr) n cmꢁ1: 3520
(N—H), 1635 (N—H), 1510 and 1340 (NO2), 1110 (C—O—C)].
[4] F. Terrier, Nucleophilic aromatic displacement: the influence of the
nitro group, in Organic Nitro Chemistry Series (Ed.: H. Ferrer) VCH
Publishers, New York, 1991.
[5] J. M. Harris, S. P. McManus, Nucleophilicity, Advances in Chemistry,
A.C.S., Washington, 1987, 215.
[6] M. R. Crampton, T. A. Emokpae, C. Isanbor, Eur. J. Org. Chem. 2007, 8,
1378–1383.
[7] M. R. Crampton, T. A. Emokpae, C. Isanbor, J. Phys. Org. Chem. 2006,
19, 75-L 80.
[8] M. R. Crampton, T. A. Emokpae, C. Isanbor, A. S. Batsanov, J. A. K.
Howard, R. Mondal, Eur. J. Org. Chem. 2006, 5, 1222–1230.
[9] M. R. Crampton, T. A. Emokpae, J. A. K. Howard, C. Isanbor, R. Mondal,
J. Phys. Org. Chem. 2004, 17, 65–70.
[10] C. Isanbor, T. A. Emokpae, M. R. Crampton, J. Chem. Soc. Perkin Trans. 2
2002, 2019–2024.
[11] M. Bakavoli, M. Pordel, M. Rahimizadeh, P. Jahandari, J. Chem. Res.
2008, 8, 432–433.
[12] C. Reichardt, Solvent and Solvents Effects in Organic Chemistry, 3rd
Edn, Wiley-VCH: Verlag GmcH & Co. KgaA, Weinheim, 2003.
[13] C. E. S. Alvaro, N. S. Nudelman, ARKIVOC. 2003; Part. X: 95-106 SIN:
1424-6369.
[14] N. S. Nudelman, C. E. S. Alvaro, M. Savini, V. Nicotra, J. S. Yankelevich,
Collect. Czech. Chem. Commun. 1999, 64, 1583–1593.
[15] N. S. Nudelman, M. Savini, C. E. S. Alvaro, V. Nicotra, J. S. Yankelevich, J.
Chem. Soc. Perkin Trans. 2 1999, 1627–1630.
[16] P. M. Mancini, G. G. Fortunato, L. R. Vottero, J. Phys. Org. Chem. 2005,
18, 336–346.
Ancillary spectrophotometric measurements
UV-VIS spectra of the substrates, the product, and different
mixtures of both compounds with the amine in toluene and
dimethylsulphoxide at several concentrations were recorded in a
Shimadzu UV-VIS 240 graphic printer PR-1 spectrophotometer.
The extinction coefficients of the products were determined at
lmax and at l ¼ 460 and 400 nm; at the three wavelengths the
reagents are transparent under these conditions. All the solutions
were found to obey Beer’s law.
[1-N-(2-benzimidazol)-3-N-(2,4-dinitrophenyl)guanidine:
Toluene: lmax ¼ 340 nm, e340 ¼ 1.413 ꢂ 104 cmꢁ1 Mꢁ1
,
e460
¼
¼
2.39ꢂ 103 cmꢁ1 Mꢁ1
;
DMSO: lmax ¼ 375 y 425 nm, e375
1.392 ꢂ104 cmꢁ1 Mꢁ1
,
e425 ¼ 1.3 ꢂ 104 cmꢁ1 Mꢁ1
,
e460 ¼ 4.5 ꢂ
103 cmꢁ1 Mꢁ1]; [N-(2,4-dinitrophenyl)-N-(3-aminopropyl)morpho-
line: Toluene: lmax ¼ 346 nm, e346 ¼ 1.04 ꢂ 104 cmꢁ1 Mꢁ1, e400
¼
3.5 ꢂ 103 cmꢁ1 Mꢁ1]; [N-(2,4-dinitrophenyl)-1-(2-aminoethyl)piperi-
dine: Toluene: lmax ¼ 348 nm, e348 ¼ 1.29 ꢂ 104cmꢁ1 Mꢁ1
e400 ¼ 4.31 ꢂ 103 cmꢁ1 Mꢁ1].
,
[17] P. M. E. Mancini, G. Fortunato, C. Adam, L. R. Vottero, A. J. Terenzani, J.
Phys. Org. Chem. 2002, 15, 258–269.
[18] P. M. E. Mancini, C. Adam, C. Perez A del, L. R. Vottero, J. Phys. Org.
Chem. 2000, 13, 221–231.
[19] C. Boga, L. Forlani, J. Chem. Soc. Perkin Trans. 2 2001, 1408–1413. and
references cited therein.
Kinetic procedures
Kinetic runs were performed by the methods previously
reported,[64] following the appearance of the reaction product
at l ¼ 460 or 400 nm. The reactions of 2-GB were carried out in
sealed ampoules (under nitrogen) at 40 ꢀ 0.2 8C and the reactions
of 2-AEPip and 3-APMo were followed directly in the thermo-
stated cell of the spectrophotometer at 25 ꢀ 0.2 8C. The
absorption spectrum of the reaction mixture at ‘infinite time’
corresponded within ꢀ2% with the ‘theoretical’ value calculated
[20] L. Forlani, C. Boga, M. Forconi, J. Chem. Soc. Perkin 2 1999, 1455–1458.
[21] L. Hintermann, R. Masuo, K. Suzuki, Org. Lett. 2008, 10(21),
4859–4862.
[22] M. Jacobsson, J. Oxgaard, C. Abrahamsson, P.-O. Norrby, W. A. God-
dard, U. Ellervik, Chemistry 2008, 14(13), 3954–3960.
[23] G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural
Chemistry and Biology, Oxford University Press, New York, 1999
[24] S. Scheiner, Hydrogen Bonding: A Theorical Perspective, Oxford Uni-
versity Press, New York, 1997.
View this article online at wileyonlinelibrary.com
Copyright ß 2010 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2011, 24 101–109