A R T I C L E S
Harth et al.
160.15, 160.25. Anal. Calcd for C441H380O63: C, 79.2; H, 5.73. Found:
C, 79.4; H, 5.87.
concentrated, was employed to increase the rate of reaction and
dramatically improve yields. In addition, the products were purified
by fractional precipitation rather than column chromatography. This
was accomplished by dissolving the filtered reaction mixture in a
minimal amount of dichloromethane and adding ethyl ether slowly until
the product starts to precipitate. The supernatant was poured off, and
the process is repeated until no more precipitates. Analysis of the
different fractions by GPC permitted the pure fractions to be identified
and combined.
L-[G-5]-Br, 36. This compound was prepared from 34, according
to the general procedure for bromination with 5.0 equiv of carbon
tetrabromide and 5.0 equiv of triphenylphosphine. The crude product
was purified by flash chromatography eluting with 9:1 dichloromethane/
hexane, gradually increasing to dichloromethane to give the bromide,
36, as a colorless solid in 81% yield. mp 145-147 °C. IR: 1605, 1375,
1
and 1180 cm-1. H NMR (CDCl3): δ 4.39 (s, 2H, CH2Br), 4.94 (s,
D-[G-1]8Por, 19a. The first generation benzylic bromide, 11 (1.0
g, 2.6 mmol), was dissolved in acetone (20 mL), followed by the
addition of tetrakis(3,5-dihydroxyphenyl)porphyrin, 37 (232 mg, 31
mmol), K2CO3 (3.0 g, 22 mmol), and 18-crown-6 (50 mg). The mixture
was heated at reflux under N2 for 5 days in the dark and purified by
fractional precipitation from ethyl ether. This afforded purple crystals
60H, ArCH2OAr), 5.05 (s, 64H, PhCH2O), 6.50-6.71 (complex m,
93H, ArH), 7.25-7.45 (complex m, 160H, PhH). 13C NMR (CDCl3):
δ 33.7, 69.82, 70.14, 101.56, 102.20, 106.43, 108.20, 127.44, 128.09,
128.55, 136.69, 139.13, 139,91, 160.00, 160.25. Anal. Calcd for
C441H379BrO62: C, 78.5; H, 5.66. Found: C, 78.7; H, 5.54.
General Procedure for the Preparation of Porphyrin Cored
1
of 19a in 90% yield. H NMR (250 MHz, CDCl3): δ 4.88 (s, 32H,
Dendrimers. The preparation of these materials was accomplished
using the conventional alkylation procedure described above, with two
notable exceptions. At higher generations, alkylation in acetone proved
to be extremely slow, and so the procedure of Weintraub and Parquette38
using a mixture of THF and DMF, which is repeatedly evaporated/
Ar-CH2-O), 5.22 (s, 16H, PhCH2O), 6.36 (t, 8H, J ) 2 Hz, Ar-H),
6.66 (t, 16H, J ) 2 Hz, ArH), 6.97 (t, 4H, J ) 2 Hz, ArH), 7.10-7.30
(m, 48H, PhH), 7.38 (d, 12H, ArH), 8.78 (s, 8H, Pyrrol).
D-[G-2]8Por, 19b. The second generation benzylic bromide, 38 (2.0
g, 2.5 mmol),13 was dissolved in acetone (40 mL), followed by the
addition of tetrakis(3,5-dihydroxyphenyl)porphyrin, 37 (297 mg, 0.40
mmol), K2CO3 (4.0 g, 29 mmol), and 18-crown-6 (50 mg). The mixture
was heated at reflux under N2 for 6 days in the dark and purified by
fractional precipitation from ethyl ether. This afforded the dendritic
(21) (a) Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638. (b)
Hawker, C. J.; Fre´chet, J. M. J. J. Chem. Soc., Chem. Commun. 1990, 1010.
(22) Zhang, J.; Moore, J. S.; Xu, Z.; Aguirre, R. A. J. Am. Chem. Soc. 1992,
114, 2273.
(23) Mio, C.; Kiritsov, S.; Thio, Y.; Brafman, R.; Prausnitz, J.; Hawker, C. J.;
Malmstrom, E. E. J. Chem. Eng. Data 1998, 43, 541.
(24) Mourey, T. H.; Turner, S. R.; Rubinstein, M.; Fre´chet, J. M. J.; Hawker,
C. J.; Wooley, K. L. Macromolecules 1992, 25, 2401.
(25) (a) Hawker, C. J.; Wooley, K. L.; Fre´chet, J. M. J. J. Am. Chem. Soc.
1993, 115, 4375. (b) Moreno-Bondi, M. C.; Orellana, G.; Turro, N. J.;
Tomalia, D. A. Macromolecules 1990, 23, 912. (c) Naylor, A. M.; Goddard,
W. A., III; Kiefer, G. E.; Tomalia, D. A. J. Am. Chem. Soc. 1989, 111,
2339. (d) Devadoss, C.; Bharathi, P.; Moore, J. S. Angew. Chem., Int. Ed.
Engl. 1997, 36, 1633. (e) Matos, M. S.; Hofkens, J.; Verheijen, W.; De
Schryver, F. C.; Hecht, S.; Pollak, K. W.; Fre´chet, J. M. J.; Forier, B.;
Dehaen, W. Macromolecules 2000, 33, 2967.
1
porphyrin, 19b, as a purple solid in 61% yield. H NMR (250 MHz,
CDCl3): δ 4.81 (s, 96H, Ar-CH2-O), 5.01 (s, 16H, PhCH2O), 6.32 (t,
16H, J ) 2 Hz, ArH), 6.52 (t, 8H, J ) 2 Hz, ArH), 6.53 (d, 32H, J )
2 Hz, ArH), 6.66 (d, 16H, J ) 4 Hz, ArH), 7.00 (t, 4H, J ) 2H, ArH),
7.14-7.24 (m, 160H, PhH), 7.42 (d, 8H, J ) 4 Hz, ArH), 8.85 (s, 8H,
Pyrrol).
D-[G-3]8Por, 19c. The third generation benzylic bromide, 39 (2.0
g, 1.08 mmol),13 was dissolved in a 4:1 mixture of THF/DMF (40 mL),
followed by the addition of tetrakis(3,5-dihydroxyphenyl)porphyrin, 37
(75 mg, 0.1 mmol), K2CO3 (3.0 g, 22 mmol), and 18-crown-6 (50 mg).
The mixture was heated at reflux under N2 for 14 h with solvent cycling
through an addition funnel in the dark and purified by fractional
precipitation from diethyl ether. This afforded the dendritic porphyrin,
(26) Wooley, K. L.; Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1991,
113, 4252.
(27) Jiang, D.-L.; Aida, T. Nature 1997, 388, 454.
(28) (a) Jin, R.-H.; Aida, T.; Inoue, S. J. Chem. Soc., Chem. Commun. 1993,
1260. (b) Dandliker, P. J.; Diederich, F.; Gross, M.; Knobler, C. B.; Louati,
A.; Sanford, E. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1739. (c)
Dandliker, P. J.; Diederich, F.; Gisselbrecht, J.-P.; Louati, A.; Gross, M.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2725. (d) Tomoyose, Y.; Jiang,
D.-L.; Jin, R.-H.; Aida, T.; Yamashita, T.; Horie, K.; Yashima, E.; Okamoto,
Y. Macromolecules 1996, 29, 5236. (e) Jiang, D.-L.; Aida, T. Chem.
Commun. 1996, 1523. (f) Sadamoto, R.; Tomioka, N.; Aida, T. J. Am.
Chem. Soc. 1996, 118, 3978. (g) Bhyrappa, P.; Young, J. K.; Moore, J. S.;
Suslick, K. S. J. Am. Chem. Soc. 1996, 118, 5708. (h) Bhyrappa, P.; Young,
J. K.; Moore, J. S.; Suslick, K. S. J. Mol. Catal. A 1996, 113, 109. (i)
Dandliker, P. J.; Diederich, F.; Zingg, A.; Gisselbrecht, J.-P.; Gross, M.;
Louati, A.; Sanford, E. M. HelV. Chim. Acta 1997, 80, 1773. (j) Collman,
J. P.; Fu, L.; Zingg, A.; Diederich, F. Chem. Commun. 1997, 193.
(29) Hecht, S.; Fre´chet, J. M. J. Angew. Chem., Int. Ed. 2001, 40, 74.
(30) (a) Jian, D.-L.; Aida, T. J. Am. Chem. Soc. 1998, 120, 10895. (b) Sato, T.;
Jiang, D.-L.; Aida, T. J. Am. Chem. Soc. 1999, 121, 10658.
(31) Kawa, M.; Fre´chet, J. M. J. Chem. Mater. 1998, 10, 286.
(32) (a) Pollak, K. W.; Sanford, E. M.; Fre´chet, J. M. J. J. Mater. Chem. 1998,
8, 519. (b) Pollak, K. W.; Leon, J. W.; Fre´chet, J. M. J.; Maskus, M.;
Abrun˜a, H. D. Chem. Mater. 1998, 10, 30. (c) Bhyrappa, P.; Vaijayanthi-
mala, G.; Suslick, K. S. J. Am. Chem. Soc. 1999, 121, 262. (d) Weyermann,
P.; Gisselbrecht, J.-P.; Boudon, C.; Diederich, F.; Gross, M. Angew. Chem.,
Int. Ed. 1999, 38, 3215. (e) Kimura, M.; Shiba, T.; Yamazaki, M.;
Hanabusa, K.; Shirai, H.; Kobayashi, N. J. Am. Chem. Soc. 2001, 123,
5636.
1
19c, as a dark purple/brown solid in 57% yield. H NMR (250 MHz,
CDCl3): δ 4.66 (s, 224H, Ar-CH2-O), 4.73 (s, 16H, PhCH2O), 6.37
(m, 96H, ArH), 6.46 (m, 40H, ArH), 6.63 (m, 32H, ArH), 7.12-7.24
(m, 320H, PhH), 8.88 (s, 8H, Pyrrol).
D-[G-4]8Por, 19d. The fourth generation benzylic bromide, 40 (2.0
g, 0.597 mmol),13 was dissolved in a 4:1 mixture of THF/DMF (50
mL), followed by the addition of tetrakis(3,5-dihydroxyphenyl)-
porphyrin, 37 (35 mg, 0.05 mmol), K2CO3 (3.0 g, 22 mmol), and 18-
crown-6 (50 mg). The mixture was heated at reflux under N2 for 12 h
with solvent cycling through an addition funnel in the dark and purified
by fractional precipitation from diethyl ether. This afforded the dendritic
1
porphyrin, 19d, as a dark purple/brown solid in 57% yield. H NMR
(250 MHz, CDCl3): δ 4.90 (s, 480H, Ar-CH2-O), 4.99 (s, 16H, CH2O),
6.37 (m, 96H, ArH), 6.42 (m, 40H, ArH), 6.60 (m, 32H, ArH), 7.12-
7.33 (m, 640H, PhH), 8.87 (s, 8H, Pyrrol).
(33) (a) Hecht, S.; Ihre, H.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1999, 121,
9239. (b) Hecht, S.; Vladimirov, N.; Fre´chet, J. M. J. J. Am. Chem. Soc.
2001, 123, 18.
L-[G-2]8Por, 20b. The linear benzylic bromide, 13 (1.50 g, 1.86
mmol), was dissolved in acetone (40 mL), followed by the addition of
tetrakis(3,5-dihydroxyphenyl)porphyrin, 37 (113 mg, 0.153 mmol),
K2CO3 (3.5 g, 25 mmol), and 18-crown-6 (50 mg). The mixture was
heated at reflux under N2 for 6 days in the dark and purified by
fractional precipitation from diethyl ether. This afforded purple crystals
(34) (a) Weber, G.; Teale, F. W. J. Trans. Faraday Soc. 1958, 54, 640. (b)
Stryer, L.; Haugland, R. P. Proc. Natl. Acad. Sci. U.S.A. 1967, 58, 719. (c)
Mugnier, J.; Pouget, J.; Bourson, J.; Valeur, B. J. Lumin. 1985, 33, 273.
(35) Consult standard photochemistry textbooks: (a) Turro, N. J. Modern
Molecular Photochemistry; University Science Books: Sausalito, 1991. (b)
Gilbert, A.; Baggott, J. Essentials of Molecular Photochemistry; CRC
Press: Boca Raton, 1991. (c) Klessinger, M.; Michl, J. Excited States and
Photochemistry of Organic Molecules; VCH: Weinheim, 1995.
(36) (a) Fo¨rster, T. Fluoreszenz Organischer Verbindungen; Vandenhoech and
Ruprech: Go¨ttingen, 1951. (b) Van der Meer, W. B.; Coker, G., III; Chen,
S.-Y. Resonance Energy Tranfer, Theory, and Data; VCH: Weinheim,
1994.
1
of 20b in 51% yield. H NMR (250 MHz, CDCl3): δ 4.79 (m, 32H,
ArCH2O), 4.86 (s, 32H, PhCH2O), 5.02 (s, 16H, ArCH2O), 6.44-6.66
(complex m, 72H, ArH), 6.98 (s, 4H, ArH), 7.17-7.41 (complex m,
160H, PhH), 7.41 (d, J ) 4 Hz, ArH), 8.84 (s, 8H, Pyrrol).
L-[G-3]8Por, 20c. The linear third generation benzylic bromide, 29
(0.75 g, 0.45 mmol), was dissolved in a 4:1 THF:DMF solution (20
mL), followed by the addition of tetrakis(3,5-dihydroxyphenyl)-
(37) Jeong, M.; Mackay, M. E.; Vestberg, R.; Hawker, C. J. Macromolecules
2001, 34, 4927.
(38) Weintraub, J. G.; Parquette, J. R. J. Org Chem. 1999, 64, 3796.
9
3930 J. AM. CHEM. SOC. VOL. 124, NO. 15, 2002