Organic Letters
Letter
(13) The luminescence quenching experiments indicated that Et3N
is more likely to quench the excited state of 4CzIPN. For details and a
additional literature, see: Wang, Z.-S.; Chen, Y.-B.; Zhang, H.-W.;
Sun, Z.; Zhu, C.; Ye, L.-W. J. Am. Chem. Soc. 2020, 142, 3636.
(14) When this reaction was conducted with Zn/Mn as a reductant
under the Ni-catalyzed conditions in DCM solvent, it did not give any
conversion, thus demonstrating that the dual Ni/photoredox-
catalyzed system is also crucial for the second process in this
transformation.
ACKNOWLEDGMENTS
■
We thank NFS of China (Grant No. 21801188), Shanghai
Pujiang Program, the “1000 Youth Talents Plan”, and Tongji
University for financial support. We thank Ms. Feng Zheng
from Tongji University for the helpful discussion on the
computational experiments.
REFERENCES
■
(1) (a) Zhan, L.; Pan, R.; Xing, P.; Jiang, B. Tetrahedron Lett. 2016,
57, 4036. (b) Preston, D.; Tucker, R. A. J.; Garden, A. L.; Crowley, J.
D. Inorg. Chem. 2016, 55, 8928. (c) Chen, X.; Hu, C.; Wan, J.-P.; Liu,
Y. Tetrahedron Lett. 2016, 57, 5116. (d) Zhao, Y.; Chen, X.; Chen, T.;
Zhou, Y.; Yin, S.-F.; Han, L.-B. J. Org. Chem. 2015, 80, 62. (e) Sen, S.
S.; Hey, J.; Kratzert, D.; Roesky, H. W.; Stalke, D. Organometallics
2012, 31, 435. (f) Rudine, A. B.; Walter, M. G.; Wamser, C. C. J. Org.
Chem. 2010, 75, 4292. (g) Lin, K.-W.; Chen, C.-Y.; Chen, W.-F.; Yan,
T.-H. J. Org. Chem. 2008, 73, 4759. (h) Zhu, X.; Jin, Y.; Wickham, J. J.
Org. Chem. 2007, 72, 2670.
(2) (a) Raposo, C. D. Synlett 2013, 24, 1737. (b) Li, L.; Cai, P.; Xu,
D.; Guo, Q.; Xue, S. J. Org. Chem. 2007, 72, 8131. (c) Lebel, H.;
Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103,
977. (d) Concellon, J. M.; Huerta, M. Tetrahedron Lett. 2002, 43,
4943. (e) Concellon, J. M.; Bernad, P. L.; Perez-Andres, J. A. J. Org.
Chem. 1997, 62, 8902.
(3) (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80,
5323. (b) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81,
4256.
(4) Zhou, Y.-Y.; Uyeda, C. Angew. Chem., Int. Ed. 2016, 55, 3171.
(5) (a) Werth, J.; Uyeda, C. Angew. Chem., Int. Ed. 2018, 57, 13902.
(b) Werth, J.; Uyeda, C. Chem. Sci. 2018, 9, 1604.
(6) (a) Csok, Z.; Vechorkin, O.; Harkins, S. B.; Scopelliti, R.; Hu, X.
J. Am. Chem. Soc. 2008, 130, 8156. (b) Vechorkin, O.; Csok, Z.;
Scopelliti, R.; Hu, X. Chem. - Eur. J. 2009, 15, 3889.
(7) (a) Velian, A.; Lin, S.; Miller, A. J. M.; Day, M. W.; Agapie, T. J.
Am. Chem. Soc. 2010, 132, 6296. (b) Qian, X.; Kozak, C. M. Synlett
2011, 2011, 852. (c) Gartia, Y.; Pulla, S.; Ramidi, P.; Farris, C. C.;
Nima, Z.; Jones, D. E.; Biris, A. S.; Ghosh, A. Catal. Lett. 2012, 142,
1397.
(8) (a) Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc. 2015, 137,
10480. (b) Hofstra, J. L.; Cherney, A. H.; Ordner, C. M.; Reisman, S.
E. J. Am. Chem. Soc. 2018, 140, 139. (c) DeLano, T. J.; Reisman, S. E.
ACS Catal. 2019, 9, 6751.
(9) (a) Zhu, C.; Yue, H.; Chu, L.; Rueping, M. Chem. Sci. 2020, 11,
4051. (b) Badir, S. O.; Molander, G. A. Chem. 2020, 6, 1327.
(c) Ruan, L.; Dong, Z.; Chen, C.; Wu, S.; Sun, J. Youji Huaxue 2017,
37, 2554. (d) Cavalcanti, L. N.; Molander, G. A. Top. Curr. Chem.
2016, 374, 39.
(10) (a) Quasdorf, K. W.; Huters, A. D.; Lodewyk, M. W.; Tantillo,
D. J.; Garg, N. K. J. Am. Chem. Soc. 2012, 134, 1396. (b) Simmons, E.
M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066. (c) Mullard,
A. Nat. Rev. Drug Discovery 2016, 15, 219. (d) Helfenbein, J.;
Lartigue, C.; Noirault, E.; Azim, E.; Legailliard, J.; Galmier, M. J.;
Madelmont, J. C. J. Med. Chem. 2002, 45, 5806. (e) Gant, T. G. J.
Med. Chem. 2014, 57, 3595.
(11) (a) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew.
Chem., Int. Ed. 2007, 46, 7744. (b) Atzrodt, J.; Derdau, V.; Kerr, W. J.;
Reid, M. Angew. Chem., Int. Ed. 2018, 57, 3022. (c) Spiegel, D. A.;
Wiberg, K. B.; Schacherer, L. N.; Medeiros, M. R.; Wood, J. L. J. Am.
Chem. Soc. 2005, 127, 12513. (d) Soulard, V.; Villa, G.; Vollmar, D.
P.; Renaud, P. J. Am. Chem. Soc. 2018, 140, 155. (e) Reich, H. J. J.
Org. Chem. 2012, 77, 5471. (f) Alonso, F.; Beletskaya, I. P.; Yus, M.
Chem. Rev. 2002, 102, 4009. (g) Kurita, T.; Hattori, K.; Seki, S.;
Mizumoto, T.; Aoki, F.; Yamada, Y.; Ikawa, K.; Maegawa, T.;
Monguchi, Y.; Sajiki, H. Chem. - Eur. J. 2008, 14, 664. (h) Wang, X.;
Zhu, M.-H.; Schuman, D. P.; Zhong, D.; Wang, W.-Y.; Wu, L.-Y.; Liu,
W.; Stoltz, B. M.; Liu, W.-B. J. Am. Chem. Soc. 2018, 140, 10970.
(12) The products 30 and 31 were detected in 19% and 6% GC
yields, respectively, in the absence of Ni/L1.
E
Org. Lett. XXXX, XXX, XXX−XXX