G. P. Schiemenz et al. · peri-Interactions in Naphthalenes, 6
17
[19] G. P. Schiemenz, R. Bukowski, L. Eckholtz,
B. Varnsku¨hler, Z. Naturforsch. 55b, 12 (2000).
[20] G. P. Schiemenz, S. Po¨rksen, C. Na¨ther, Z. Natur-
forsch. 55b, 841 (2000).
Krieger, G. Hieber, K. Oberdorf, Angew. Chem. 109,
1946 (1997); Angew. Chem. Int. Ed. Engl. 36, 1884
(1997)).
[27] H. W. W. Ehrlich, Acta Crystallogr. 10, 699, (1957)
˚
[21] G. P. Schiemenz, B. Schiemenz, S. Petersen,
C. Wolff, Chirality 10, 180 (1998).
(acenaphthene, d(H2C-CH2) = 1.54 A).
[28] T. C. W. Mak, J. Trotter, Acta Crystallogr. 16,
[22] E. g., in 1,8-dimethyl-naphthalene: D. Bright, I. E.
Maxwell, J. de Boer, J. Chem. Soc., Perkin Trans.
2, 1973, 2101.
[23] E. g., in 1,8-diphenyl-naphthalene: R. L. Clough,
W. J. Kung, R. E. Marsh, J. D. Roberts, J. Org.
Chem. 41, 3603 (1976).
811 (1963) (acenaphthenequinone, d(OC-CO) =
˚
1.53 A).
[29] R. A. Wood, T. R. Welberry, A. D. Rae, J. Chem.
Soc., Perkin Trans 2 1985, 451 (acenaphthylene,
˚
d(HC=CH) = 1.40 A).
[30] C. W. Holzapfel, M. W. Bredenkamp, R. M. Sny-
man, J. C. A. Boeyens, C. C. Allen, Phytochem-
istry 29, 639 (1990); A. Wang, H. Zhang, E. Biehl,
Heterocycles 48, 303 (1998) (2 substituted naph-
[24] E. g., in 1,8-dimethoxy-naphthalene: L. J. Fitz-
gerald, J. C. Gallucci, R. E. Gerkin, Acta Crystal-
logr. B 47, 776 (1991).
˚
˚
thostyrils, d(N-CO) = 1.37 and 1.38 A).
[25] E. g., 2.584 A in 1,8-F2C10H6 (A. Meresse, C. Cour-
seille, F. Leroy, N. B. Chanh, Acta Crystallogr. B 31, [31] C. J. McAdam, J. J. Brunton, B. H. Robinson,
˚
1236 (1975)), 2.545 A in 1,8-(MeO)2C10H6 [24],
J. Simpson, J. Chem. Soc., Dalton Trans. 1999,
˚
2.793 A in 1,8-(Me2N)2C10H6 (K. Wozniak, H. He,
J. Klinowski, B. Nogaj, D. Lemanski, D. E. Hibbs,
2487 (a ferrocenyl-substituted bis(methylene)ace-
˚
naphthene, d((C=)C-C(=C)) = 1.51 A).
M. B. Hursthouse, S. T. Howard, J. Chem. Soc., [32] Molecule A of two independent molecules in the
Faraday Trans. 91, 3925 (1995). Note that these dis-
tances are shorter than the respective Σ r(vdW) (F/F
unit cell [11]; splay angle calculated from the atomic
˚
coordinates [11]; molecule B: d(N...P) = 2.729 A.
˚
˚
˚
3.0 A, O/O 3.2 A, N/N 3.1 A [45]) by 14%, 20% and [33] Cf. A. Schmidpeter, T. von Criegern, K. Blanck,
10%, respectively. Accordingto the procedure of
R. O. Day, T. K. Prakasha, R. R. Holmes, H. Eckert,
Organometallics 13, 1285 (1994) (p. 1290), and
T K. Prakasha, S. Srinivasan, A. Chandrasekaran,
R. O. Day, R. R. Holmes, J. Am. Chem. Soc. 117,
Z. Naturforsch. 32b, 1058 (1976). A cornucopia of
examples is listed in pertinent reviews such as R. R.
Holmes, Pentacoordinated Phosphorus, I, II, (ACS
Monograph 175, 176), American Chemical Society,
Washington, D.C. (1980).
10003 (1995) (p. 10006) (which has been applied [34] R. R. Holmes, Acc. Chem. Res. 31, 535 (1998).
to DAN-P compounds [16]), they would stand for [35] G. Wittig, M. Rieber, Liebigs Ann. Chem. 562, 187
a hypercoordinate character of 14.2% (F), 34.8%
(1949).
(O) and 18.1% (N) (calculations based on the cova- [36] D. Hellwinkel, Chem. Ber. 98, 576 (1965).
lent radii of L. Pauling, The Nature of the Chemical [37] Note that even in cases of strongest steric hindrance,
Bond and the Structure of Molecules and Crystals,
2nd ed., p. 164, Cornell U. P., Ithaca NY (1945).
the geometry of the naphthalene skeleton does not
permit the peri substituents to attain Σ r(vdW) dis-
tances and that it is therefore a matter of course that
they reside at sub-van-der-Waals distances.
[26] A recently published DAN-silacyclobutane struc-
˚
ture (d(N...Si) = 2.61, 2.62 A) revealed a very
small in-plane and a considerable out-of-plane dis- [38] W. Klyne, V. Prelog, Experientia 16, 521 (1960);
tortion: M. Spiniello, J. M. White, Organometallics
19, 1350 (2000). Not surprisingly, 1,4,5,8-tetrasub-
cf. S. Kane, W. H. Hersh, J. Chem. Educ. 77, 1366
(2000).
stituted naphthalenes have considerable recourse to [39] With reference to unpublished X-ray data contained
out-of-plane distortion, because an increase of the
interatomic distances by in-plane distortion in the
1,8-peri space is always combined with a compres-
sion of the 4,5-peri space and is thus opposed by
4,5-substituents: e. g. 1,4,5,8-Cl4C10H4 (G. Gafner,
F. H. Herbstein, Acta Crystallogr. 15, 1081 (1962));
1,4,5,8-Ph4C10H4 (G. Evrard, P. Piret, M. Van
Meerssche, Acta Crystallogr. 28, 497 (1972)); 1,8-
(Me2N)2-4,5-(CHO)2C10H4 (A. F. Pozharskii, G. G.
Aleksandrov, N. V. Vistorobskii, Zh. Org. Khim.
27, 1536 (1991); J. Org. Chem. (USSR) 27, 1347
(1991); considerable out-of-plane distortion in addi-
tion to strongin-plane distortion on both peri sides;
splay angles +7.7 on the (Me2N)2 side, +9.4 on
the formyl side); C10Ph8 (X. Qiao, M. A. Padula,
D. M. Ho, N. J. Vog elaar, C. E. Schutt, R. A.
Pascal (Jr.), J. Am. Chem. Soc. 118, 741 (1996));
1,8-(Me2N)2-4,5-(MeO)2C10H4 (H. A. Staab, C.
in a Ph. D. thesis, it has been claimed that in DAN-
P+ (CH2Ph)Ph2 Br [7], the lone pair of the nitrogen
atom is directed towards the phosphorus atom trans
to the benzyl group [13]. Since no numerical values
˚
other than d(N...P) = 2.83 A are given, it cannot
be judged whether this salt indeed behaves differ-
˚
2.50 A
ent from 5c-f. In our opinion, d(N...P)
and the tetrahedral geometry around P+ (certainly
somewhat distorted because of different substituents
at P+) with the Me2N group “capping” one of the
tetrahedral planes as a geometric necessity [19, 20]
are evidence against N P dative interaction. The
topomerization barriers of the Me groups at N in
5a, its chalkogenides and its ethoxycarbonylmethyl
phosphonium cation observed in dynamic 1H NMR
spectroscopy [13] can be ascribed to sterically hin-
dered rotation [14, 21] and thus do not show “that all
+
these compounds [includingDAN-P (CH2Ph)Ph2-
Brought to you by | University of Gothenburg
Authenticated
Download Date | 10/12/17 8:40 AM