Macromolecules, Vol. 35, No. 12, 2002
Communications to the Editor 4555
F. W.; Sakaguchi, Y.; Shibata, M.; Hsu, S. L. C. High
Perform. Polym. 1997, 9, 251. (f) Scola, D. A. J . Polym. Sci.,
Polym. Chem. Ed. 1993, 31, 1997. (g) Kim, W. G.; Hay, A.
S. Macromolecules 1993, 26, 5275. (h) Mikroyannidis, J . A.
Macromolecules 1995, 28, 5177. (i) Spiliopoulos, I. K.;
Mikroyannidis, J . A. Macromolecules 1996, 29, 5313. (j)
Chung, I. S.; Kim, S. Y. Macromolecules 1998, 31, 5920.
(4) (a) Harris, F. W.; Hsu, S. L. C. High Perform. Polym. 1989,
1, 3. (b) Matsuura, T.; Hasuda, Y.; Nishi, S.; Yamada, N.
Macromolecules 1991, 24, 5001. (c) Wang, Z. Y.; Qi, Y.
Macromolecules 1995, 28, 4207. (d) Lin, S.-H.; Li, F.; Cheng,
S. Z. D.; Harris, F. W. Macromolecules 1998, 31, 2080. (e)
Zheng, H. B.; Wang, Z. Y. Macromolecules 2000, 33, 4310.
(f) Chung, I. S.; Kim, S. Y. Macromolecules 2000, 33, 3190.
(5) (a) Moore, J . A.; Robello, D. R. Macromolecules 1989, 21,
1084. (b) Moore, J . A.; Robello, D. R. Macromolecules 1986,
19, 2667. (c) J ones, G. Quinolines; Wiley: London, 1977.
(6) (a) Moore, J . A.; Kaur, S. Macromolecules, 1997, 30, 3427.
(b) Mikroyannidis, J . A. Eur. Polym. J . 1993, 29, 527. (c)
Mikroyannidis, J . A. Eur. Polym. J . 1991, 27, 859.
519 °C in air. The above TGA results reveal that the
polyimides with enaminonirile units have good thermal
stability in nitrogen comparable to that of conventional
polyimide like Kapton, but 5 wt % loss occurred at lower
temperatures in air than in nitrogen, indicating that
the polymers are somewhat susceptible to thermooxi-
dative degradation. It seems that thermooxidative
degradation of the polymer chains occurred before
complete curing.
In summary, the diamine monomers containing one
enaminonitrile unit were synthesized and polymerized
with various aromatic dianhydrides by using the one-
pot solution imidization method. While the polymeri-
zation of the diamine monomer 4 produced insoluble
polymers, the polyimides from the diamine monomer 5
were soluble in polar aprotic solvents and showed
excellent thermal stability. All the polymers exhibited
broad irreversible exothermic transitions between 350
and 450 °C, indicating curing of enaminonitrile groups.
The polymers became insoluble after curing.
(7) Chung, I. S.; Kim, S. Y. Polym. Bull. (Berlin) 1997, 38, 635.
(8) Spectral data of monomers 4 and 5. [(p-Aminophenylamino)-
4-aminophenylmethylidene]propanedinitrile (4): mp 292 °C
(DSC); FT IR (KBr, cm-1) 3437, 3350, 3250 (NH2 and NH),
2213, 2190 (CN), 1606 (aromatic CdC); 1H NMR (DMSO-
d6, 200 MHz) 9.96 (s, 1H, -NH-); 7.24 (s, 2H); 6.79 (s, 2H);
6.58, 6.54, 6.49, 6.45 (dd, 4H); 5.94 (s, 2H, -NH2); 5.16(s,
2H, -NH2); 13C NMR (DMSO-d6, 300 MHz) 167.93, 152.91,
147.19, 131.41, 127.27, 125.59, 119.03, 118.24, 116.04,
113.62, 112.74, 47.79. HRMS (m/e): calcd for C16H13N5,
275.1172; found, 275.1172. [(m-Aminophenylamino)-4-ami-
nophenylmethylidene]propanedinitrile (5): mp 238 °C (DSC);
FT IR (KBr, cm-1) 3473, 3364, 3232 (NH2 and NH), 2207
(CN), 1602 (aromatic CdC); 1H NMR (DMSO-d6, 200 MHz)
10.08 (s, 1H, -NH-); 7.29, 7.24 (d, 2H); 6.94, 6.90, 6.86 (t,
1H); 6.58, 6.54 (d, 2H); 6.34, 6.32 (m, 2H); 6.20, 6.17 (d, 1H);
6.04 (s, 2H, -NH2); 5.18 (s, 2H, -NH2); 13C NMR (DMSO-
Ack n ow led gm en t. This work was supported by
Center for Advanced Functional Polymers at Korea
Advanced Institute of Science and Technology (KAIST)
and by the Brain Korea 21 project.
Su p p or tin g In for m a tion Ava ila ble: Text giving syn-
thetic procedures and figures showing FTIR, 1H NMR, 13C
NMR, and HRMS spectra of monomers 4 and 5 and IR and
1H NMR spectra and DSC curves of model compound 6 and
polymer 9. This material is available free of charge via the
Internet at http://pubs.acs.org.
d
6, 300 MHz) 167.49, 153.32, 149.21, 139.67, 131.83, 129.08,
118.64, 117.45, 115.96, 112.84, 111.50, 111.18, 108.74, 49.82.
HRMS (m/e): calcd for C16H13N5, 275.1172; found, 275.1172.
(9) A typical polymerization procedure is as follows (polymer
9): A 50 mL three-neck round-bottomed flask equipped with
an argon inlet and mechanical stirrer was charged with
0.4434 g (1.6106 mmol) of diamine monomer 5 and 10 mL
of NMP. To this solution was added in one portion 0.5190 g
of BTDA (1.6106 mmol) at 0 °C. The solution was stirred at
room temperature for 8 h and then heated gradually to 190
°C for additional 12 h. The water generated by imidization
was distilled from the reaction mixture along with small
amount of chlorobenzene. The product was precipitated into
distilled water, filtered, washed with hot water and hot
MeOH repeatedly, and dried in vacuo at 80 °C for 24 h
(0.8815 g, 98%). FTIR (film, cm-1): 3250 (NH); 2218 (CN);
1781, 1717 (CdO of imide); 1658 (CdO of ketone); 1600,
1513 (aromatic); 1368 (C-N stretching); 725 (CdO of
bending).1H NMR (DMSO-d6, 200 MHz): 11.08 (s, 1H,
-NH-); 8.27-8.16 (m, 6H); 7.87, 7.83 (d, 2H); 7.68, 7.64
(d, 2H); 7.52-7.36 (br, 4H).
Refer en ces a n d Notes
(1) (a) Cassidy, P. E. Thermally Stable Polymers; Marcel
Dekker: New York, 1980. (b) Mittal, K. L., Ed. Polyimides:
Synthesis, Characterization, Application; Plenum Press:
New York, 1984, Vols. 1 and 2. (c) Takeshi, T. In Polyimides;
Ghosh, M. K., Mittal, K. L., Eds.; Marcel Dekker: New York,
1996, p7.
(2) (a) Harris, F. W. In Polyimides, Wilson, D., Stenzenberger,
H. D., Hergenrother, P. M., Eds.; Chapman and Hall: New
York, 1989, p 1. (b) Boise, A. I. J . Appl. Polym. Sci. 1986,
32, 4043. (c) Kim, Y. H.; Walker, G. F.; Kim, J .; Park, J . J .
Adhes. Sci. Technol. 1987, 1, 331. (d) Kowalczyk, S. P.; Kim,
Y. H.; Walker, G. F.; Kim, J . Appl. Phys. Lett. 1988, 52, 375.
(e) Burrell, M. C.; Codella, P. J .; Fontana, J . A.; McConnell,
M. D. J . Vac. Sci. Technol. 1989, A7, 55.
(3) (a) Huang, S. J .; Hoyt, A. E. Trends Polym. Sci. 1995, 3,
262. (b) Mercer, F. W.; Goodman. T. D. High Perform. Polym.
1991, 3, 297. (c) Hedrick, J . L.; Labadie, J . W. J . Polym.
Sci., Polym. Chem. Ed. 1992, 30, 105. (d) Auman, B. C.;
Trofimenko, S. Macromolecules 1994, 27, 1136. (e) Harris,
MA0115085