diffraction analysis showed that polymer 1e, spontaneously
crystallises as a conglomerate in the non-centrosymmetric space
group P212121. Similarly to 1d, the pentacyclic ligand of the
polymer 1e adopts a helical shape.
This study shows that bis-cyclomanganated 2,3-diphenyl-
1,4-diazabenzene compounds, through exaltation of their in-
trinsic prohelicity, are convenient substrates for the ster-
eoselective elaboration of helical molecules.
We thank the CNRS (France) and the DFG (Germany) for
financial support.
Notes and references
‡
For compounds 1c–e, the intrinsic low quality of the analysed crystals
yielded structures with poor resolution. Crystal data for 1c:
C
52H32Mn2N2O6, M = 890.72, monoclinic, P21/n, a = 15.6887(7), b =
16.7698(9), c = 15.9857(7) Å, b = 93.588(5)°, V = 4197.5(3) Å3, Z = 4,
Dc = 1.41 g cm23, m = 0.657 mm21, F(000) = 1824, l(MoKa) = 0.71073
Å, T = 294 K, dark blue, dimensions 0.20 3 0.14 3 0.10 mm. A total of
16 708 reflections were collected with 2.5 < q(°) < 27.51. R = 0.035, Rw
= 0.040, GOF = 1.040, maximum residual electron density 0.289 e Å23
.
3947 unique reflections had intensities I > 3s(I). CCDC reference number
176859.
For 1d: C52H28Mn2N2O6·CH2Cl2, M = 971.62, orthorhombic, Pbca, a =
14.8379(2), b = 35.4532(3), c = 16.3322(5) Å, V = 8591.6(3) Å3, Z = 8,
Dc = 1.50 g cm23, m = 0.769 mm21, F(000) = 3952, l(MoKa) = 0.71073
Å, T = 173 K, yellow, dimensions 0.16 3 0.13 3 0.10 mm. A total of
19 157 reflections were collected with 2.5 < q(°) < 27.48. R = 0.051, Rw
= 0.082, GOF = 1.415, maximum residual electron density 0.589 e Å23
3614 unique reflections had intensities I > 3s(I). CCDC reference number
176860.
For 1e: C53H31AgMn2N2O6·BF4·2CH3OH, M = 1176.48, orthorhombic,
P212121, a = 13.6186(5), b = 15.1375(7), c = 25.032(1) Å, V = 5160.5(4)
Å3, Z = 4, Dc = 1.51 g cm23, m = 0.930 mm21, F(000) = 2372, l(MoKa)
= 0.71073 Å, T = 173 K, red, dimensions 0.12 3 0.10 3 0.08 mm. A total
of 11 811 reflections were collected with 2.5 < q(°) < 27.48. R = 0.058,
Rw = 0.080, GOF = 1.513, maximum residual electron density 0.959 e
Å23. 3656 unique reflections had intensities I > 3s(I). CCDC reference
number 176861.
.
Fig. 2 ORTEP diagram of the structure of 1d drawn at the 40% probability
level. Hydrogen atoms and solvated CH2Cl2 are omitted for clarity; selected
bond lengths (Å) and angles (°): Mn(1)–C(15) 2.147(8), Mn(1)–C(7)
2.190(7), Mn(1)–C(14) 2.201(7), Mn(1)–C(13) 2.207(7), Mn(1)–C(12)
2.233(7); C(14)–C(15)–C(7) 105.5(6), C(15)–C(14)–C(13) 110.5(6),
C(14)–C(13)–C(12) 106.8(7), C(13)–C(12)–C(7) 107.9(6). Angle (°)
between mean planes P1 (C12–C13–C14–C15–C7) and P2 (C34–C35–C36–
C37–C38–C39): 12.7(4). Distance (Å) between centroids, Cgn, of planes Pn:
Cg1–Cg2 3.70.
5
two terminal (h -fluorenyl)Mn(CO)3 fragments.† In agreement
data in CIF or other electronic format.
with analogous observations made for the reaction of XRe-
(CO)3L3 with C5H4N2,9 complex 1d likely results from the
formal insertion of a fluorenylidene moiety into the CAr–Mn
bond and a succession of subsequent haptotropic shifts that end
1 W. H. Laarhoven and W. J. C. Prinsen, in Stereochemistry, F. Vögtle
and E. Weber, ed., Springer Verlag, Berlin, 1984, p. 63.
2 O. Katzenelson, J. Edelstein and D. Avnir, Tetrahedron Asymmetry,
2000, 11, 2695.
3 P. J. Steel and G. B. Caygill, J. Organomet. Chem., 1990, 395, 359.
4 R. H. Janke, G. Haufe, E. U. Würthwein and J. H. Borkent, J. Am. Chem.
Soc., 1996, 118, 6031.
5 M. Pfeffer, Pure Appl. Chem., 1992, 94, 935; J. Spencer and M. Pfeffer,
Adv. Met.-Org. Chem., 1998, 6, 103; J. Dupont, M. Pfeffer and J.
Spencer, Eur. J. Inorg. Chem., 2001, 1917.
6 J. P. Djukic, C. Michon, A. Maisse-François, R. Allagapen, M. Pfeffer,
K. H. Dötz, A. De Cian and J. Fischer, Chem. Eur. J., 2000, 6, 1064; J.
P. Djukic, A. Maisse-François, M. Pfeffer, K. H. Dötz, A. De Cian and
J. Fischer, Organometallics, 2000, 19, 5484; J. P. Djukic, K. H. Dötz, M.
Pfeffer, A. De Cian and J. Fischer, Organometallics, 1997, 16, 5171; J.
P. Djukic, A. Maisse, M. Pfeffer, K. H. Dötz and M. Nieger, Eur. J.
Inorg. Chem., 1998, 1781.
5
by forming the final appended bis(h -fluorenyl)Mn(CO)3
complex (Scheme 2). The structure of 1d is helical in shape as
a result of the compact arrangement of the three central
1,2-disubstituted aromatics (Fig. 2). The two Mn(CO)3 moieties
point outwards to minimize steric interactions and allow
stabilising intramolecular p–p stacking.
The reaction of 1d with stoichiometric amounts of AgBF4 in
acetone cleanly afforded a new bright red linear hybrid
inorganic/organometallic polymer10 1e (Scheme 2).† Slow
recrystallisation of a crude sample of 1e from a THF–MeOH
solution by diffusion in n-heptane afforded red crystals. X-Ray
7 M. I. Bruce, B. L. Goodall and I. Matsuda, Aust. J. Chem., 1975, 28,
1259.
8 Y. Umezawa, S. Tsuboyama, H. Takahashi, J. Uzawa and M. Nishio,
Tetrahedron, 1999, 55, 10 047.
9 R. R. Cesati and J. A. Katzenellenbogen, J. Am. Chem. Soc., 2001, 123,
4093.
10 A. N. Khlobystov, A. J. Blake, N. R. Champness, D. A. Lemenovskii, A.
G. Majouga, N. V. Zyk and M. Schröder, Coord. Chem. Rev., 2001, 222,
155; M. Munakata, L. P. Wu and G. L. Ning, Coord. Chem. Rev., 2000,
198, 171; B. Schmaltz, A. Jouaiti, M. W. Hosseini and A. De Cian,
Chem. Commun., 2001, 1242; C. M. Fitchett and P. J. Steel, New J.
Chem., 2000, 24, 945; P. A. Maggard, C. L. Stern and K. R.
Poeppelmeier, J. Am. Chem. Soc., 2001, 123, 7742; S. A. Bourne, M.
Kilkenny and L. R. Nassimbeni, J. Chem. Soc., Dalton Trans., 2001,
1176; A. J. Blake, N. R. Champness, A. N. Khlobystov, D. A.
Lemenovskii, W. S. Li and M. Schröder, Chem. Commun., 1997,
1339.
Scheme 2 Reaction of 1b with 9-diazofluorene and reactivity of the product
1d towards coordination to Ag+.
CHEM. COMMUN., 2002, 638–639
639