10.1002/chem.201702374
Chemistry - A European Journal
COMMUNICATION
MgSO4 and filtered. Volatiles were then removed in vacuo and products
were isolated by flash chromatography on silica gel (Et2O).
Organometallics 2012, 31, 1208-1211; e) J. Yuan, H. Hu and C. Cui,
Chem. Eur. J. 2016, 22, 5778-5785.
[10] J. P. W. Stelmach, C. A. Bange and R. Waterman, Dalton Trans. 2016,
45, 6204-6209.
[11] a) M. Kamitani, M. Itazaki, C. Tamiya and H. Nakazawa, J. Am. Chem.
Soc. 2012, 134, 11932-11935; b) M. Itazaki, S. Katsube, M. Kamitani and
H. Nakazawa, Chem. Commun. 2016, 52, 3163-3166.
Acknowledgements
The University of Bath and the EPSRC is thanked for funding. The
EPSRC UK National Mass Spectrometry Facility at Swansea
University is thanked for mass spectrometry analyses.
[12] Markovnikov and anti-Markovnikov hydrophosphination of alkenes has
been achieved with iron pre-catalysts. FeCl2 gives Markovnikov product
and FeCl3 gives anti-Markovnikov product: L. Routaboul, F. Toulgoat, J.
Gatignol, J.-F. Lohier, B. Norah, O. Delacroix, C. Alayrac, M. Taillefer
and A.-C. Gaumont, Chem. Eur. J. 2013, 19, 8760-8764.
Keywords: homogeneous catalysis • iron • phosphanes •
phosphaalkenes • hydrophosphination
[13] A. K. King, A. Buchard, M. F. Mahon and R. L. Webster, Chem. Eur. J.
2015, 21, 15960-15963.
[14] Catalyst-free alkyne HP has been reported by Alonso and co-workers at
70 °C (neat reaction conditions, overnight reaction). See: a) F. Alonso, Y.
Moglie, G. Radivoy and M. Yus, Green Chem. 2012, 14, 2699-2702; b)
Y. Moglie, M. J. Gonzalez-Soria, I. Martin-Garcia, G. Radivoy and F.
Alonso, Green Chem. 2016, 18, 4896-4907. Catalyst-free reactions in
CH2Cl2 give poor yields (Ref. 13).
[1]
[2]
J. A. Kent, Kent and Riegel's Handbook of Industrial Chemistry and
Biotechnology, Springer, Dordrecht, 2010.
P. C. J. Kamer and P. W. N. M. v. Leeuwen, Phosphorus(III) Ligands in
Homogeneous Catalysis: Design and Synthesis, Wiley-VCH, Weinheim,
2012.
[15] Aliphatic alkynes such as ethynylcyclopentane and 1-hexyne do not
undergo hydrophosphination under any of the standard reaction
conditions. No reaction is observed between HPCy2 and phenylacetylene
under the optimized Markovnikov or anti-Markovnikov conditions.
[16] Crystal data for 4 (C74H92Fe2N4, CCDC 1521799). M = 1149.21, λ =
1.54184, monoclinic, space group P 1 21/n 1, a = 13.9894(4), b =
13.2581(4), c = 17.8087(5) Å, α = 90, β = 97.573(3), γ = 90 °, U =
3274.22(16) Å3, Z = 2, ρcald = 1.166 gcm−3, μ = 3.873 mm−1, F(000) =
1232. Crystal size = 0.209 x 0.128 x 0.031 mm, unique reflections =
21950, observed reflections [I>2σ(I)] = 5249, data/restraints/parameters
= 6454/0/371. Observed data; R1 = 0.0427, wR2 = 0.0941. All data; R1
[3]
[4]
[5]
W. J. Stec, Phosphorus Chemistry Directed Towards Biology, Pergamon
Press, New York, 1979.
S. Monge and G. David, Phosphorus-Based Polymers: From Synthesis
to Applications, Royal Society of Chemistry, Cambridge, 2014.
a) F. Müller, Agrochemicals: composition, production, toxicology,
applications, Wiley-VCH, Weinheim, 2000; b) E. Bꢀnemann, Phosphorus
in Action Biological Processes in Soil Phosphorus Cycling, Springer,
Berlin, Heidelberg, 2011.
[6]
[7]
I. Wauters, W. Debrouwer and C. V. Stevens, Beilstein J. Org. Chem.
2014, 10, 1064-1096.
a) O. Delacroix and A. C. Gaumont, Curr. Org. Chem. 2005, 9, 1851-
1882; b) S. Greenberg and D. W. Stephan, Chem. Soc. Rev. 2008, 37,
1482-1489; c) L. Rosenberg, ACS Catal. 2013, 2845-2855; d) V. Koshti,
S. Gaikwad and S. H. Chikkali, Coord. Chem. Rev. 2014, 265, 52-73; e)
C. A. Bange and R. Waterman, Chem. Eur. J. 2016, 22, 12598-12605.
a) M. A. Kazankova, I. V. Efimova, A. N. Kochetkov, V. V. Afanas'ev, I.
P. Beletskaya and P. H. Dixneuf, Synlett 2001, 497-500; b) M. A.
Kazankova, I. V. Efimova, A. N. Kochetkov, V. V. Afanas'ev and I. P.
Beletskaya, Russ. J. Org. Chem. 2002, 38, 1465-1474; c) F. Jerome, F.
Monnier, H. Lawicka, S. Derien and P. H. Dixneuf, Chem. Commun. 2003,
696-697; d) H. Ohmiya, H. Yorimitsu and K. Oshima, Angew. Chem. Int.
Ed. 2005, 44, 2368-2370; e) A. A. Kissel, T. V. Mahrova, D. M. Lyubov,
A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, I. Del Rosal and L. Maron,
Dalton Trans. 2015, 44, 12137-12148; f) C. A. Bange and R. Waterman,
ACS Catal. 2016, 6, 6413-6416; g) A. Di Giuseppe, R. De Luca, R.
Castarlenas, J. J. J. Perez-Torrente, M. Crucianelli and L. A. Oro, Chem.
Commun. 2016, 52, 5554-5557; h) h) J. Yuan, L. Zhu, J. Zhang, J. Li and
C. Cui, Organometallics 2017, 36, 455-459.
= 0.0571, wR2 = 0.1003. Max peak/hole = 0.290 and −0.259 eÅ−3
,
respectively.
[17] a) O. S. Mills and A. D. Redhouse, Chem. Commun. 1966, 444-445; b)
O. S. Mills and A. D. Redhouse, J. Chem. Soc. A. 1968, 1282-1292; c)
D. F. Marten, E. V. Dehmlow, D. J. Hanlon, M. B. Hossain and D. Van
der Helm, J. Am. Chem. Soc. 1981, 103, 4940-4941; d) M. P. Gamasa,
J. Gimeno, E. Lastra, M. Lanfranchi and A. Tiripicchio, J. Organomet.
Chem. 1992, 430, C39-C43.
[8]
[18] See supporting information.
[19] T. J. J. Sciarone, A. Meetsma and B. Hessen, Inorg. Chim. Acta 2006,
359, 1815-1825.
[20] a) S. O. Obare, T. Ito and G. J. Meyer, J. Am. Chem. Soc. 2006, 128,
712-713; b) H. Song and E. R. Carraway, Environ. Eng. Sci. 2006, 23,
272-284; c) S. J. Bransfield, D. M. Cwiertny, K. Livi and D. H. Fairbrother,
Appl. Catal., B. 2007, 76, 348-356; d) S. El-Tarhuni, M. Ho, M. H. Kawser,
S. Shi and M. W. Whiteley, J. Organomet. Chem. 2014, 752, 30-36.
[21] A. Panda, M. Stender, R. J. Wright, M. M. Olmstead, P. Klavins and P.
P. Power, Inorg. Chem. 2002, 41, 3909-3916.
[9]
a) K. Takaki, M. Takeda, G. Koshoji, T. Shishido and K. Takehira,
Tetrahedron Lett. 2001, 42, 6357-6360; b) K. Takaki, K. Komeyama and
K. Takehira, Tetrahedron 2003, 59, 10381-10395; c) K. Takaki, G.
Koshoji, K. Komeyama, M. Takeda, T. Shishido, A. Kitani and K.
Takehira, J. Org. Chem. 2003, 68, 6554-6565; d) H. Hu and C. Cui,
This article is protected by copyright. All rights reserved.