I.Y. Skobelev et al. / Journal of Catalysis 298 (2013) 61–69
[3] E.F. Murphy, T. Mallat, A. Baiker, Catal. Today 57 (2000) 115.
69
ROOH becomes the main pathway because the concentration of
iron species in solution is very low (<7 ppm), while the concentra-
tion of dioxygen is about 0.01 M [61]. Indeed, the ROOH product
predominates at high temperature when Fe-MIL-101 is destroyed,
and catalysis becomes homogeneous. However, further mechanis-
tic studies are needed to verify the possibility of the formation of
the iron-oxo species in the Fe-MIL-101 framework.
[4] J. Muzart, Chem. Rev. 92 (1992) 113.
[5] N. Chidambaram, S. Chandrasekaran, J. Org. Chem. 52 (1987) 5048.
[6] B.M. Choudary, A.D. Prasad, V. Swapna, V.L.K. Valli, V. Bhuma, Tetrahedron 48
(1992) 953.
[7] H.E.B. Lempers, R.A. Sheldon, Appl. Catal. A 143 (1996) 137.
[8] A. Sakthivel, S.E. Dapurkar, P. Selvam, Appl. Catal. A 246 (2003) 283.
[9] S.E. Dapurkar, A. Sakthivel, P. Selvam, New J. Chem. 27 (2003) 1184.
[10] R.A. Sheldon, M. Wallau, I.W.C.E. Arends, U. Schuchardt, Acc. Chem. Res. 31
(1998) 485.
[11] J.L.C. Rowsell, O.M. Yaghi, Micropor. Mesopor. Mater. 73 (2004) 3.
[12] A.K. Cheetham, C.N.R. Rao, R.K. Feller, Chem. Commun. (2006) 4780.
[13] G. Férey, Chem. Soc. Rev. 37 (2008) 191.
4. Conclusions
[14] A.U. Czaja, N. Trukhan, U. Muller, Chem. Soc. Rev. 38 (2009) 1284.
[15] D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 48 (2009) 7502.
[16] A. Corma, H. García, F.X. Llabrés i Xamena, Chem. Rev 110 (2010) 4606.
[17] M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 112 (2011) 1196.
[18] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Catal. Sci. Technol. 1 (2011) 856.
[19] Thematic issue on metal-organic frameworks, Chem. Rev. 112 (2012) 673.
[20] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I.
Margiolaki, Science 309 (2005) 2040.
[21] K.M.L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, W. Lin, J. Am. Chem. Soc.
131 (2009) 14261.
[22] Y.K. Hwang, D.-Y. Hong, J.-S. Chang, H. Seo, M. Yoon, J. Kim, S.H. Jhung, C. Serre,
G. Férey, Appl. Catal. A 358 (2009) 249.
[23] A. Henschel, K. Gedrich, R. Kraehnert, S. Kaskel, Chem. Commun. (2008) 4192.
[24] J. Kim, S. Bhattacharjee, K.-E. Jeong, S.-Y. Jeong, W.-S. Ahn, Chem. Commun.
(2009) 3904.
[25] N.V. Maksimchuk, K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, Adv. Synth.
Catal. 352 (2010) 2943.
[26] N.V. Maksimchuk, K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, Chem. Commun.
48 (2012) 6812.
[27] N.V. Maksimchuk, M.N. Timofeeva, M.S. Melgunov, A.N. Shmakov, Yu.A.
Chesalov, D.N. Dybtsev, V.P. Fedin, O.A. Kholdeeva, J. Catal. 257 (2008) 315.
[28] G.B. Shul’pin, J. Mol. Catal. A: Chem. 189 (2002) 39.
[29] H.L. Wang, J.L. Duda, C.J. Radke, J. Colloid Interface Sci. 66 (1978) 153.
[30] D.E. Van Sickle, F.R. Mayo, R.M. Arluck, J. Am. Chem. Soc. 87 (1965) 4832.
[31] U. Neuenschwander, F. Guignard, I. Hermans, ChemSusChem 3 (2010) 75.
[32] U. Neuenschwander, I. Hermans, Phys. Chem. Chem. Phys. 12 (2010) 10542.
[33] S. Bauer, C. Serre, T. Devic, P. Horcajada, J. Marrot, G. Férey, N. Stock, Inorg.
Chem. 47 (2008) 7568.
[34] S.E. Dapurkar, H. Kawanami, K. Komura, T. Yokoyama, Y. Ikushima, Appl. Catal.
A 346 (2008) 112.
[35] D. Jiang, T. Mallat, D.M. Meier, A. Urakawa, A. Baiker, J. Catal. 270 (2010) 26.
[36] M. Tonigold, Y. Lu, A. Mavrandonakis, A. Puls, R. Staudt, J. Möllmer, J. Sauer, D.
Volkmer, Chem. Eur. J. 17 (2011) 8671.
[37] J. Mao, X. Hu, H. Li, Y. Sun, C. Wang, Z. Chen, Green Chem. 10 (2008) 827.
[38] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, J. Catal. 289 (2012) 259.
[39] A. Dhakshinamoorthy, M. Alvaro, Y.K. Hwang, Y.-K. Seo, A. Corma, H. Garcia,
Dalton Trans. 40 (2011) 10719.
[40] E.T. Denisov, N.I. Mitskevich, V.E. Agabekov, Liquid-Phase Oxidation of
Oxygen-Containing Compounds, Consultants Press, New York, 1977.
[41] R.A. Sheldon, J.K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds,
Academic Press, New York, 1981.
This study demonstrates that Fe and Cr-containing metal–or-
ganic frameworks of the MIL-101 family catalyze efficiently oxida-
tion of alkenes with molecular oxygen under mild solvent-free
conditions. By varying the nature of transition metal in the MIL-
101 framework, it is possible to govern the oxidation selectivity.
Cr-MIL-101 favors the formation of a,b-unsaturated ketones, while
Fe-MIL-101 can produce higher amounts of allylic alcohols. The
nature of catalysis over Cr-MIL-101 was proved to be true hetero-
geneous under all range of the conditions studied. In contrast, Fe-
MIL-101 revealed a lower stability under turnover conditions and
behaved as true heterogeneous only at 40 °C. The XRD and N2
adsorption measurements clearly showed that the structure of
Fe-MIL-101 partially collapsed after several reuses although FT-IR
spectroscopy revealed the presence of the main characteristic
bands of the MOF. Meanwhile, under optimal conditions both Cr-
and Fe-catalysts could be recycled at least four times without loss
of the catalytic properties. Since the reaction products inhibit the
oxidation process through adsorption on the MOF active centers,
the feasible alkene conversions are not high for one catalytic run.
However, the employment of solvent-free conditions ensures high
volume yield of the oxidation products even at rather low conver-
sions. At the temperature higher than 40 °C, Fe-MIL-101 starts suf-
fering from iron leaching, and catalysis becomes homogeneous,
which results in much higher substrate conversion and change of
the product selectivity (hydroperoxide turns out to be the main
oxidation product).
With both Fe- and Cr-catalysts, the oxidation of alkenes pro-
ceeds through radical chain mechanism, as pointed out by the
rate-retarding effect of the inhibitor (ionol) and rate-accelerating
effect of the initiator (TBHP); however, different pathways (both
radical chain and non-radical chain) may contribute to the product
formation, resulting in different reaction selectivities. The metal-
centered oxidation steps leading to unsaturated alcohol product
are probably involved in the case of Fe-MIL-101, while dehydration
of hydroperoxide and/or oxidation of alcohol to ketone over Cr-
MIL-101 are responsible for the predominate formation of unsatu-
rated ketones.
[42] E.T. Denisov, I.B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry
and Biology, Taylor & Francis, Boca Raton, 2005.
[43] F. Haber, J. Weiss, Proc. R. Soc. London, A 147 (1934) 332.
[44] H. Weiner, A. Trovarelli, R.G. Finke, J. Mol. Catal. A: Chem. 191 (2003) 217.
[45] U. Neuenschwander, I. Hermans, J. Catal. 287 (2012) 1.
[46] J.D. Chen, J. Dakka, R.A. Sheldon, Appl. Catal. A 108 (1994) L1.
[47] W. Buijs, R. Raja, J.M. Thoma, H. Wolters, Catal. Lett. 91 (2003) 253.
[48] J.D. Chen, J. Dakka, E. Neeleman, R.A. Sheldon, J. Chem. Soc., Chem. Commun
(1993) 1379.
[49] I. Hermans, J. Peeters, P.A. Jacobs, Top. Catal. 48 (2008) 41.
[50] H.E.B. Lempers, J.D. Chen, R.A. Sheldon, Stud. Surf. Sci. Catal. 94 (1995) 705.
[51] K.U. Ingold, P.A. MacFaul, in: B. Meunier (Ed.), Biomimetic Oxidation Catalyzed
by Transition Metal Complexes, Imperial College Press, London, 2000, p. 45.
[52] A. Ramanathan, M.S. Hamdy, R. Parton, T. Maschmeyer, J.C. Jansen, U. Hanefeld,
Appl. Catal. A 355 (2009) 78.
[53] A.P. Singh, N. Torita, S. Shylesh, N. Iwasa, M. Arai, Catal. Lett. 132 (2009) 492.
[54] N. Turrà, A.B. Acuña, B. Schimmöller, B. Mayr-Schmölzer, P. Mania, I. Hermans,
Top. Catal. 54 (2011) 737.
Acknowledgments
Dr. M.S. Melgunov is gratefully acknowledged for some N2
adsorption measurements. The research was partially supported
by the Russian Foundation for Basic Research (Grant 09-03-
93109). I.Y.S. acknowledges French Embassy in Moscow for the
doctoral fellowship. Work at the Nikolaev Institute of Inorganic
Chemistry was supported by the State Contracts (1729.2012.3
and 02.740.11.0628).
[55] P.A. MacFaul, K.U. Ingold, D.D.M. Wayner, L. Que Jr., J. Am. Chem. Soc. 119
(1997) 10594.
[56] J. Kim, R.G. Harrison, C. Kim, L. Que Jr., J. Am. Chem. Soc. 118 (1996) 4373.
[57] A.B. Sorokin, E.V. Kudrik, Catal. Today 159 (2011) 37.
[58] S. Tanase, E. Bouwman, Adv. Inorg. Chem. 58 (2006) 29.
[59] P.D. Oldenburg, L. Que Jr., Catal. Today 117 (2006) 15.
[60] O.Y. Lyakin, K.P. Bryliakov, G.J.P. Britovsek, E.P. Talsi, J. Am. Chem. Soc. 131
(2009) 10798.
References
[1] M. Hudlicky, Oxidations in Organic Chemistry, ACS Monograph Series,
American Chemical Society, Washington, DC, 1990. p. 84.
[2] R.A. Sheldon, in: R.A. Sheldon, H. van Bekkum (Eds.), Fine Chemicals through
Heterogeneous Catalysis, Wiley-VCH, Weinheim, 2001, p. 519.
[61] R. Battino, T.R. Rettich, T. Tominaga, J. Phys. Chem. Ref. Data 12 (1983) 163.