C O M M U N I C A T I O N S
In summary, we have demonstrated the feasibility of the kinetic
resolution of atropisomeric amides using the commercially avaliable
AD-mix. To our knowledge, this methodology represents the first
catalytic kinetic resolution of such compounds. The resolution of
the amides examined here would be difficult to otherwise achieve.
Their half-lives to racemization range from 7 to 135 h at 23 °C.
Such data is essential in the construction of ligands for asymmetric
catalysis from these precursors.
Acknowledgment. This paper is dedicated to Professor Charles
L. Perrin (UCSD) for his inspirational teaching and research. This
work was supported by the Petroleum Research Fund.
Supporting Information Available: Substrate preparation, AD
procedure, and ee analyses (PDF). This material is available free of
Figure 1. The X-ray structures of 1 and the major diastereomer formed
on its dihydroxylation are shown (top). The proposed reactive conformation
of 1, B, is illustrated (bottom).
References
Table 2. Barriers to Racemization of Atropisomeric Amides
(1) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. ComprehensiVe Asymmetric
Catalysis; Springer: Berlin, 1999; Vols. 1-3.
q
entry
amide
temp (°C)
half-life (h)
k (10-6 s-1
)
∆G temp (kcal/mol)
(2) Ojima, I.; Ed. Catalytic Asymmetric Synthesis, 2nd ed; Wiley-VCH: New
1
2
3
4
5
6
7
8
9
1
1
1
4
7
7
7
8
8
8
25
4
-16
25
25
4
-16
25
16
181
1970
135
12
118
680
7
24.1
23.8
23.6
27.3
24.0
23.5
23.0
23.7
23.1
22.7
York, 2000.
1.1
0.10
1.4
16
1.6
0.28
27
3.4
0.52
(3) Rosini, C.; Franzini, L.; Raffaelli, A.; Salvadori, P. Synthesis 1992, 503-
505.
(4) Pu, L. Chem. ReV. 1998, 98, 2405-2494.
(5) Shibasaki, M.; Sasai, H.; Arai, T. Angew. Chem., Int. Ed. Engl. 1997, 36,
1237-1256.
(6) Noyori, R.; Kitamura, M. Modern Synthetic Methods; Springer: Berlin,
1989.
(7) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40-73.
4
-16
57
379
(8) Clayden, J. Synlett 1998, 810-816.
10
(9) Oki, M. Top. Stereochem. 1983, 14, 1-81.
(10) Curran, D. P.; Qi, H.; Geib, S. J.; DeMello, N. C. J. Am. Chem. Soc.
1994, 116, 3131-3132.
4.8:1 mixture of diaostereomers to 80 °C (C6D6, 9 h) resulted in
equilibration of the diasteromers to a 1:1 mixture that did not change
on further heating. The de of the diol product using pyridine as
ligand under the same reaction conditions was also 4.8:1. Therefore,
the kinetic diastereoselectivity in the AD of 1 was dictated by the
substrate and not the catalyst. To explore the stereochemistry of
the diol product formed from 1, crystal structures of the starting
olefin and racemic diol product were obtained. The structure of
the olefin is illustrated in Figure 1 and shows the double bond in
the plane of the aromatic ring. Also evident from the structure is
the orthogonality of the amide and aryl groups. Surprisingly, the
structure of the diol product indicates that the oxygens have been
delivered to the face of the olefin proximal to the bulky N,N-
diisopropyl groups. The NMR spectrum of the dissolved crystals
is consistent with the major diastereomer. To account for this
unexpected result, we propose that the active conformation of the
olefin is B in Figure 1, in which the re face is preferentially attacked.
In contrast to the reactivity of terminal olefin 1, dihydroxylation
of 2 resulted in initial generation of a single diastereomer. As the
conversion approaches 50%, a second diastereomer is formed,
leading to a 1:1 ratio of the diastereomers on completion of the
reaction. Thus, with the R,â-unsaturated ester 2, the diastereose-
lectivity is controlled by the catalyst and not the substrate.
Application of the Sharpless AD to the kinetic resolution of
atropisomeric olefins enabled us to isolate these materials with high
enantiopurity. We then determined their racemization rates at
different temperatures employing HPLC. The results are listed in
Table 2. Racemizations were first-order with half-lives at 23 °C
ranging from 7 h for 8 to 135 h for 4. Larger N-alkyl groups lead
to higher barriers to racemization and bulkier substituents ortho to
the amide decrease racemization rates.
(11) Curran, D. P.; Geib, S.; DeMello, N. Tetrahedron 1999, 55, 5681-5704.
(12) Curran, D. P.; Hale, G. R.; Geib, S. J.; Balog, A.; Cass, Q. B.; Degani,
A. L. G.; Hernandes, M. Z.; Freitas, L. C. G. Tetrahedron: Asymmetry
1997, 8, 3955-3975.
(13) Hughes, A. D.; Price, D. A.; Shishkin, O.; Simpkins, N. S. Tetrahedron
Lett. 1996, 37, 7607-7610.
(14) Hughes, A. D.; Price, D. A.; Simpkins, N. S. J. Chem. Soc., Perkin Trans.
1 1999, 1295-1304.
(15) Clayden, J.; Lai, L. W. Angew. Chem., Int. Ed. 1999, 38, 2556-2558.
(16) Clayden, J.; Lai, L. W. Tetrahedron Lett. 2001, 42, 3163-3166.
(17) Clayden, J.; Johnson, P.; Pink, J. H.; Helliwell, M. J. Org. Chem. 2000,
65, 7033-7040.
(18) Fujita, M.; Kitagawa, O.; Izawa, H.; Dobashia, A.; Fukaya, H.; Taguchi,
T. Tetrahedron Lett. 1999, 40, 1949-1952.
(19) Kitagawa, O.; Izawa, H.; Sato, K.; Dobashi, A.; Taguchi, T. J. Org. Chem.
1998, 63, 2634-2640.
(20) Kitagawa, O.; Izawa, H.; Taguchi, T.; Shiro, M. Tetrahedron Lett. 1997,
38, 4447-4450.
(21) Dai, W.-M.; Yeung, K. K. Y.; Liu, J.-T.; Zhang, Y.; Williams, I. D. Org.
Lett. 2002, 4, 1615-1618.
(22) Thayumanavan, S.; Beak, P.; Curran, D. P. Tetrahedron Lett. 1996, 37,
2899-2902.
(23) Strauss, U. T.; Felfer, U.; Faber, K. Tetrahedron: Asymmetry 1999, 10,
107-117.
(24) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. AdV. Synth. Catal. 2001, 1,
5-26.
(25) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. ReV. 1994,
94, 2483-2547.
(26) VanNieuwenhze, M. S.; Sharpless, K. B. J. Am. Chem. Soc. 1993, 115,
7864-7865.
(27) Hawkins, J. M.; Meyer, A. Science 1993, 260, 1918-1920.
(28) Jefford, C. W.; Misra, D.; Dishington, A. P.; Timari, G.; Rossier, J.-C.;
Bernardinelli, G. Tetrahedron Lett. 1994, 35, 6275-6278.
(29) Corey, E. J.; Noe, M. C.; Guzman-Perez, A. J. Am. Chem. Soc. 1995,
117, 10817-10824.
(30) Yokomatsu, T.; Yamagishi, T.; Sada, T.; Suemune, K.; Shibuya, S.
Tetrahedron 1998, 54, 781-790.
(31) Hamon, D. P. G.; Tuck, K. L. J. Org. Chem. 2000, 65, 7839-7846.
(32) Ahmed, A.; Bragg, R. A.; Clayden, J.; Lai, L. W.; McCarthy, C.; Pink, J.
H.; Westlund, N.; Yasin, S. A. Tetrahedron 1998, 54, 13277-13294.
JA026436R
9
J. AM. CHEM. SOC. VOL. 124, NO. 35, 2002 10273