M. Karakus, P. Lönnecke, E. Hey-Hawkins
EI MS: 580 [M-2L]ϩ (65 %), 538 [M-2L-CMe2]ϩ ( 15 %), 496 [M-2L-
2CMe2]ϩ (96 %),275 [(MeOC6H4)PS2ONi]ϩ) (19 %), 187 [MeOC6H4POS]ϩ
(34 %), 155 [MeOC6H4PO]ϩ (100 %), 139 [MeOC6H4P]ϩ (22 %), 108
[MeOC6H4]ϩ (33 %), and fragmentation products thereof (L ϭ 3-acetylpyri-
dine). IR (cmϪ1): 1696vs, 1592vs, 1498s ν(CO), 1020m ν(PO)?, 959 vs ν(PO)?,
647s νasym(PS2), 546vs νsym(PS2). µeff ϭ 3.04 B.M.. UV-vis spectrum: λmax ϭ
524 (ε ϭ 70) and 689 nm (ε ϭ 87).
bridge CB2 1EZ, UK; fax: (ϩ44) 1223-336-033; or deposit@-
ccdc.cam.uk).
Acknowledgement. M. Karakus is grateful to DAAD for a postdoc-
toral fellowship (A/03/21316).
References
[1] S. Ooi, Q. Fernando, Inorg. Chem. 1967, 6, 1558.
[2] M. D. Sexton, J. Chem. Soc. Perkin Trans. 2, 1984, 1771.
[3] A. J. Burn, I. Gosney, C. P. Warrens, J. P. Wastle, J. Chem.
Soc. Perkin Trans. 2, 1995, 265.
[4] I. Haiduc, D. B. Sowerby, Polyhedron, 1995, 15, 2469.
[5] P. Porta, A. Sgamellotti, N. Vinciguerra, Inorg. Chem. 1971,
10, 541.
[6] W. E. van Zyl, R. J. Staples, J. P. Fackler, Jr., Inorg. Chem.
Commun. 1998, 1, 51.
[7] J. P. Fackler, Jr., L. D. Thompson, Jr., Inorg. Chim. Acta. 1981,
48, 45.
3.3 trans-Bis{O-2,4-di-tert-butylphenyl(4-methoxy-
phenyldithiophosphonato)-κS,SЈ}bis(3-acetylpyridine-
κN)nickel(II) (3):
[Ni{S2P(O-2,4-tBu2C6H3)(p-CH3O-C6H4)-κS,SЈ}2] (0.1 g, 0.11
mmol). Yield: 0.068 g (54 %); mp 120 °C. C56H70N2NiO6P2S4:
calcd. C 60.26, H 6.32, N 2.50, S 11.49, found C 59.9, H 7.57, N
2.48, S 11.5 %.
EI MS: 873 [M-2L]ϩ (28 %), 667 [M-2L-O(tBu2C6H3)]ϩ (18 %), 259
[MeOC6H4PS2Ni]ϩ (25 %), 191 [tBu2C6H3]ϩ (100 %), 139 [MeOC6H4P]ϩ
(22 %), 57 [C(CH3)3]ϩ (89 %), and fragmentation products thereof (L ϭ 3-
acetylpyridine). IR (cmϪ1): 1684vs, 1592vs, 1497s ν(CO), 1023vs ν(PO), 648s
[8] M. C. Aragoni, M. Arca, F. Demartin, F. A. Devillanova, C.
Graiff, F. Isaia, V. Lippolis, A. Tiripicchio, G. Verani, J. Chem.
Soc. Dalton Trans. 2001, 2671.
νasym(PS2), 547s νsym(PS2). µeff ϭ 3.14 B.M.. UV-vis spectrum: λmax
524 nm (ε ϭ 236) and 682 nm (ε ϭ 264).
ϭ
[9] I. Haiduc, L. David, O. Cozar, R. Micu-Semeniuc, G. Mezei,
M. Armenean, J. Mol. Struct. 1999, 482-483, 153.
[10] M. Arca, A. Cornia, F. A. Devillanova, A. C. Fabretti, F.
Isaia, V. Lippolis, G. Verani, Inorg. Chim. Acta. 1997, 262, 81.
[11] C. M. Thomas, A. Neels, H. Stœckli-Evans, G. Süss-Fink, J.
Organomet. Chem. 2001, 633, 85.
3.4 X-ray crystal structure determination of 1 and 3
Crystallographic data are given in Table 2. Data [λ(MoKα) ϭ
˚
0.71073 A] were collected with a Siemens CCD (SMART) dif-
[12] Y. Özcan, S. Ide, M. Karakus, H. Yilmaz, Acta Crystallogr.
fractometer. All observed reflections were used for determination
of the unit cell parameters. Empirical absorption correction with
SADABS [14]. The structure was solved by direct methods
(SHELXTL PLUS [15]). H atoms located by difference maps and
refined isotropically.
2002, C58, m388.
´
[13] M. D. Santana, G. Garcıa, C. M. Navarro, A. A. Lozano, J.
´
´
´
Perez, L. Garcıa, G. Lopez, Polyhedron 2002, 21, 1935.
[14] G. M. Sheldrick, SADABS Ϫ a Program for Empirical Ab-
sorption Correction, Göttingen, 1998.
CCDC-231725 (1) and -231726 (3) contain the supplementary crys-
tallographic data for this paper. These data can be obtained free of
charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the
Cambridge Crystallographic Data Centre, 12 Union Road, Cam-
[15] SHELXTL PLUS, Siemens Analyt. X-ray Inst. Inc., 1990, XS:
Program for Crystal Structure Solution, XL: Program for
Crystal Structure Determination, XP: Interactive Molecular
Graphics.
1252
2004 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim
zaac.wiley-vch.de
Z. Anorg. Allg. Chem. 2004, 630, 1249Ϫ1252