42
V. Bertolasi et al. / Journal of Molecular Structure 658 (2003) 33–42
Scheme 4.
[2] K.B.G. Torssell, Nitrile oxides, nitrones, nitronates in organic
synthesis, Novel Strategies in Synthesis, VCH Publishers,
New York, 1988, pp. 86–93, Chapter 3.3.
methyl (2-cyano-4-nitrophenylsulphanyl)ethanoate
(1g) cyclises by action of triethylamine in methanol
to give methyl 3-amino-5-nitrobenzo[b]thiophene-
2-carboxylate (2g) (Scheme 4). This stands in
accordance with the finding [9] that also 2-(cyano-
methylsulphanyl)-5-nitrobenzonitrile and 2-(2-oxo-2-
phenylethylsulphanyl)-5-nitrobenzonitrile undergo
ring closure by action of KOH in aqueous DMF to
give the corresponding derivatives of 3-amino-5-
nitrobenzo[b ]thiophene. This happens in spite of the
fact that the side chain in compound 1g, like in
compound 1b, is oriented towards the non-substituted
ortho-position of the benzene ring. Obviously, the
difference is in that the ortho-nitro group of
compound 1b is almost coplanar with the ring and
the nucleophilic attack would necessitate a rotation of
nitro group connected with a certain loss in resonance
energy. On the other hand, the attack of the carbanion
on nitrogen atom of linear cyano group is possible.
The fact that 2-cyano-4-nitro derivative undergoes
ring closure whereas 2,4-dinitro derivative does not
and the fact that in 2-methoxycarbonyl-4,6-dinitro
derivative it is the methoxycarbonyl and not the nitro
group that is attacked by the carbanion indicate that
the nitro group is the least suitable for an attack by
carbanion at the conditions used, and such an attack
only takes place if there is no other, more suitable
group available.
[3] K. Wagner, H. Heitzer, L. Oehlmann, Chem. Ber. 106 (1973)
640.
¨
[4] P. Friedlander, A. Chwala, Monat. Chem. 28 (1907) 247.
ˇ
[5] K. Dudova, F. Castek, V. Machacek, P. Simunek, Molecules 7
ˇ
´
´
´ˇ
˚
(2002) 7.
´ ´ˇ
[6] M. Janık, V. Machacek, O. Pytela, Collect. Czech. Chem.
Commun. 62 (1997) 1429.
[7] J.R. Beck, J. Org. Chem. 38 (1973) 4086.
[8] J.R. Beck, J. Org. Chem. 37 (1972) 3224.
[9] J.R. Beck, J.A. Jahner, J. Org. Chem. 39 (1974) 3440.
[10] F. Terrier, Nucleophilic Aromatic Displacement. The influ-
ence of the Nitro Group, VCH Publishers, New York, 1991,
Chapter 3, pp. 157–206.
[11] Z. Otwinowski, Z. Minor, in: C.W. Carter, R.M. Sweet (Eds.),
Methods in Enzymology, Part A, vol. 276, Academic Press,
London, 1977, pp. 307–326.
[12] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C.
Giacovazzo, A. Guagliardi, A.G. Moliterni, G. Polidori, R.
Spagna, J. Appl. Crystallogr. 32 (1999) 115.
[13] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure
¨ ¨
Refinement, University of Gottingen, Gottingen, Germany,
1997.
[14] M. Nardelli, J. Appl. Crystallogr. 28 (1995) 659.
[15] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
[16] M.N. Burnett, C.K. Johnson, ORTEP-III: Oak Ridge Thermal
Ellipsoids Plot Program for Crystal Structure Illustrations,
Oak Ridge National Laboratory Report ORNL-6895, TN,
1996.
´
´
´
[17] J.D. Angyan, R.A. Poirier, A. Kucsman, I.G. Csizmadia,
J. Am. Chem. Soc. 109 (1987) 2237.
[18] K.M. Gough, J. Millington, Can. J. Chem. 73 (1995) 1287.
´ ´ ´ ´
[19] A. Kalman, L. Parkanyi, Acta Crystallogr. B36 (1980) 2372.
Acknowledgements
´ ´
[20] C. Cohen-Addad, M.S. Lehmann, P. Becker, L. Parkanyi, A.
´ ´
Kalman, J. Chem. Soc. Perkin Trans. 2 (1984) 181.
´
[21] A Kucsman, I. Kapovits, L. Parkanyi, G. Argay, A. Kalman,
The authors thank the Grant Agency of the Czech
Republic for financial support (Grant No.
203/01/0227).
´
´
´
´
J. Mol. Struct. 125 (1984) 331.
[22] N. Pandya, A.J. Basile, A.K. Gupta, P. Hand, C.L. MacLaurin,
T. Mohammad, E.S. Ratami, M.S. Gibson, M.F. Richardson,
Can. J. Chem. 71 (1993) 561.
References
[23] R.E. Rosenfield Jr., R. Parthasarathy, J.D. Dunitz, J. Am.
Chem. Soc. 99 (1977) 4860.
[24] H.-B. Bu¨rgi, J.D. Dunitz, E. Shefter, J. Am. Chem. Soc. 95
(1973) 5065.
[1] A.R. Katritzky, J.M. Lagowski, Chemistry of the Heterocyclic
N-Oxides, Academic Press, London, 1971, pp. 120–141,
Chapter II.
[25] H.-B. Bu¨rgi, Faraday Discuss. 122 (2002) 41.