1416
J. E. Sheppeck et al. / Bioorg. Med. Chem. Lett. 17 (2007) 1413–1417
3. Black, R. A.; Rauch, C. T.; Kozlosky, C. J.; Peschon, J. J.;
Slack, J. L.; Wolfson, M. F.; Castner, B. J.; Stocking, K.
L.; Reddy, P.; Srinivasan, S.; Nelson, N.; Bolani, N.;
Schooley, K. A.; Gerhart, M.; Devis, R.; Fitzner, J. N.;
Johnson, R. S.; Paxton, R. J.; March, C. J.; Cerretti, D. P.
Nature 1997, 385, 729.
4. (a) Moss, M. L.; White, J. M.; Lambert, M. H.; Andrews,
R. C. Drug Discovery Today 2001, 6, 417; (b) Skotnicki, J.
S.; Martin, J.; Levin, J. I. Curr. Opin. Drug Discovery Dev.
2003, 6, 742.
by comparing the 3-dimensional structures of cis-14
and trans-15 which both project the side-chain amide
carbonyl in the same orientation with different cyclo-
pentane puckering (see accompanying paper). Racemic
trans-15 was separated into its enantiomers using chi-
ral HPLC and the putative (5R,6S)-trans-15 enantio-
mer accounted for the pTACE activity at 11 nM.
Reversing the amide side chain in the spirocyclic hyd-
antoins (akin to compound (5R)–5) produced an even
more conformationally constrained analog, compound
19, as a pair of diastereomers. Like its isosteric analog
trans-15, trans-19 proved to be the more active diaste-
reomer albeit 3-fold less active for pTACE at 54 nM.
The conformational effects of spirocyclohexane ana-
logs were also investigated. Compound cis-16 was
4-fold less active than the cyclopentyl analog 14, pre-
sumably due to a less than optimal orientation of the
equatorial P10 side chain. Nevertheless, reversing the
amide in the cyclohexyl series gave trans-20 which
had good pTACE activity at 24 nM. In an effort to
elaborate on the good pTACE activity of compound
19, the spirocyclopentane was replaced with a pyrrol-
idine ring to give compounds 22a–c. The pTACE
activity of these analogs was good with IC50s of 13,
25, and 28 nM, respectively, with excellent selectivity.
5. (a) Skiles, J. W.; Gonnella, N. C.; Jeng, A. Y. Curr. Med.
Chem. 2001, 8, 425; (b) Whittaker, M.; Floyd, C. D.;
Brown, P.; Gearing, A. J. H. Chem. Rev. 1999, 99, 2735.
6. Duan, J. J.-W.; Chen, L.; Wasserman, Z. R.; Lu, Z.; Liu,
R.-Q.; Covington, M. B.; Qian, M.; Hardman, K. D.;
Magolda, R. L.; Newton, R. C.; Christ, D. D.; Wexler, R.
R.; Decicco, C. P. J. Med. Chem. 2002, 45, 4954, and
references therein.
7. For an excellent review that discusses hydroxamate
shortcomings and non-hydroxamate inhibitors, see: (a)
Breuer, E.; Trant, J.; Reich, R. Expert Opin. Ther. Patents
2005, 15, 253, and ref. 5. Also; (b) Michaelides, M. R.;
Dellaria, J. F.; Gong, J.; Holms, J. H.; Bouska, J. J.;
Stacey, J.; Wada, C. K.; Heyman, H. R.; Curtin, M. L.;
Guo, Y.; Goodfellow, C. L.; Elmore, I. B.; Albert, D. H.;
Magoc, T. J.; Marcotte, P. A.; Morgan, D. W.; Davidsen,
S. K. Bioorg. Med. Chem. Lett. 2001, 11, 1553; (c)
Schroder, J.; Henke, A.; Wenzel, H.; Brandstetter, H.;
Stammler, H. G.; Stammler, A.; Pfeiffer, W. D.; Tsche-
sche, H. J. Med. Chem. 2001, 44, 3231; (d) Grams, F.;
Brandstetter, H.; D’Alo, S.; Geppert, D.; Krell, H.-W.;
Leinert, H.; Livi, V.; Menta, E.; Oliva, A.; Zimmerman,
G. Biol. Chem. 2001, 382, 1277; (e) Miyata, K.; Kimura,
H.; Ishikawa, T.; Yamamoto, K. WO2001/72718, 2001; (f)
Kawamura, N.; Yamashita, T.; Takizawa, M.; Yoshim-
ura, K. JP 143650, 2000.
8. In vivo hydrolysis or proteolysis of hydroxamates is highly
variable and structure-dependent. It should be noted that
hydroxylamine exposure in humans causes methemoglo-
binemia—an acute toxicity apparently not observed dur-
ing safety studies of several hydroxamates that have
passed phase II clinical trials. Nevertheless, many
hydroxamates have shown human toxicity which has been
conjectured to arise from broad-spectrum metalloprotease
inhibition, e.g., the muscle toxicity caused by marimistat.
9. see Ref. 6 and Wasserman, Z. R.; Duan, J. J.-W.; Voss,
M.; Xue, C.-B.; Cherney, R. J.; Nelson, D. J.; Hardman,
K. D.; Decicco, C. P. Chem. Biol. 2003, 10, 215.
In summary, hydantoins have been known for over 100
years and 5,5-diphenylhydantoin (DilantinÒ, phenytoin)
has been used for decades to treat epilepsy. The use of
hydantoins as a privileged scaffold for MMP inhibition
has not been reported in the literature15—remarkable
considering this century old heterocycle, mass produced
in the early 1990s as the first combinatorial libraries,16
has no doubt passed through extensive high-throughput
screening against all varieties of metalloproteases. When
incorporated into a TACE inhibitor, the hydantoin is a
good albeit intrinsically less potent Zn ligand than an
analogous hydroxamate. Our evidence suggests that
the stringent requirement for unsubstituted hydantoin
nitrogens, the unnatural (5R) stereochemistry, and an
H bond acceptor appended to an appropriately func-
tionalized hydrophobic P10 side chain that complements
the MMP S10 pocket are what confer activity to this new
class of molecules.17
10. (a) Nyc, J. F.; Mitchell, H. K. J. Am. Chem. Soc. 1947, 69,
1382; (b) Cescon, L. A.; Day, A. R. J. Org. Chem. 1962,
27, 581; (c) Obrecht, D.; Karajiannis, H.; Lehmann, C.;
Schonholzer, P.; Spiegler, C.; Muller, K. Helv. Chim. 1995,
78, 703; (d) Stratford, E. S.; Curley, R. W., Jr. J. Med.
Chem. 1983, 26, 1463; (e) Sacripante, G.; Edward, J. T.
Can. J. Chem. 1982, 60, 1982; (f) Stratford, E. S.; Curley,
R. W., Jr. J. Med. Chem. 1983, 26, 1463.
Acknowledgment
We thank Tom Scholz for NMR experiments and M.
Galella for X-ray crystallographic analysis of a 22 pre-
cursor which has been deposited to the CCDC.
11. (a) Curry, K.; McLennan, H.; Rettig, S. J.; Trotter, J. Can.
J. Chem. 1993, 71, 76; (b) Oldfield, W.; Cashin, C. H.
J. Med. Chem. 1965, 8, 239.
References and notes
12. (a) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113,
7277; (b) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden,
S. P. Synthesis 1994, 639.
13. Hong, C. Y.; Kim, Y. K.; Lee, Y. H.; Kwak, J. H. Bioorg.
Med. Chem. Lett. 1998, 8, 221.
14. For a description of assay protocols, see: Xue, C.-B.; Voss,
M. E.; Nelson, D. J.; Duan, J.-J.-W.; Cherney, R. J.;
Jacobson, I. C.; He, X.; Roderick, J.; Chen, L.; Corbett,
R. L.; Wang, L.; Meyer, D. T.; Kennedy, K.; DeGrado,
W. F.; Hardman, K. D.; Teleha, C. A.; Jaffee, B. D.; Liu,
1. (a) Aggarwal, B.; Kohr, W.; Hass, P.; Moffat, B.; Spencer,
S.; Henzel, W.; Bringman, T.; Nedwin, G.; Goeddel, D.;
Harkins, R. J. Biol. Chem. 1985, 260, 2345; (b) Bemel-
mans, M.; van Tits, L.; Buurman, W. Crit. Rev. Immunol.
1996, 16, 1.
2. (a) Braun, J.; van der Heijde, D. Exp. Opin. Invest. Drugs
2003, 12, 1097; (b) Mikuls, T. R.; Moreland, L. W. Exp.
Opin. Pharm. 2001, 2, 75.