S. D. Edmondson et al. / Bioorg. Med. Chem. Lett. 14 (2004) 5151–5155
5155
O
CO2H
CO2H
O
F
H
H
TFA-
NH3
O
N
O
N
N
N
+O
O
+
F
TFA-
NH3
51, DPP-IV IC50 = 7200 nM
37, DPP-IV IC50 = 0.48 nM
Figure 3. Cyclohexylglycine analog 51 and potent and selective DPP-IV inhibitor 37.
4. Ahren, B.; Landin-Olsson, M.; Jansson, P.-A.; Svensson,
M.; Holmes, D.; Schweizer, A. J. Clin. Endocrinol. Metab.
2004, 89, 2078.
5. (a) Villhauer, E. B.; Brinkman, J. A.; Naderi, G. B.;
Burkey, B. F.; Dunning, B. E.; Prasad, K.; Mangold, B.
L.; Russell, M. E.; Hughes, T. E. J. Med. Chem. 2003, 46,
2774; (b) Ashworth, D. M.; Atrash, B.; Baker, G. R.;
Baxter, A. J.; Jenkins, P. D.; Jones, D. M.; Szelke, M.
Bioorg. Med. Chem. Lett. 1996, 6, 1163, (2 X = CH2) and
2745 (2, X = S).
6. (a) Xu, J.; Ok, H. O.; Gonzalez, E. J.; Colwell, L. F., Jr.;
Habulihaz, B.; He, H.; Leiting, B.; Lyons, K. A.; Marsilio,
F.; Patel, R. A.; Wu, J. K.; Thornberry, N. A.; Weber, A.
E.; Parmee, E. R. Bioorg. Med. Chem. Lett. 2004, 14, 4759;
(b) Brockunier, L. L.; He, J.; Colwell, L. F., Jr.;
Habulihaz, B.; He, H.; Leiting, B.; Lyons, K. A.; Marsilio,
F.; Patel, R. A.; Teffera, Y.; Wu, J. K.; Thornberry, N. A.;
Weber, A. E.; Parmee, E. R. Bioorg. Med. Chem. Lett.
2004, 14, 4763.
bioavailability and exposure. In the case of methyl ester
48, a rapid and complete conversion of the ester to acid 49
was observed. In order to determine the reason for the
poor oral exposures, three representative compounds
(19, 20, and 37) were administered orally to portal vein
cannulated rats. Compared to a well absorbed positive
control (theophylline), all three compounds were poorly
absorbed ([compound] < 10nM). Thus, the poor bioavail-
ability of these proline derived acids can be attributed
to poor oral absorption of this series of inhibitors. It ap-
pears that the acid functionality contributes to the poor
absorption since 22 possesses improved oral bioavaila-
bility and exposure compared to the other analogs.
In conclusion, a series of potent and highly selective pro-
line derived DPP-IV inhibitors has been described, cul-
minating in the discovery of analog 37, a 0.48nM
DPP-IV inhibitor with >50,000-fold selectivity over all
other enzymes tested (Fig. 3). In contrast, cyclohexylgly-
cine derived a-amino amide analog 51 is a poor DPP-IV
inhibitor with no selectivity over DPP8 and DPP9. Con-
sequently, it appears that the excellent selectivity pro-
file of the above described inhibitors is derived from
the b-amino amide functionality combined with the
carboxylic acid moiety. Future efforts in this structure
class will focus on maintaining the excellent potency
and selectivity while improving the pharmacokinetic
profile of these homophenylalanine derived DPP-IV
inhibitors.
7. This work was reported in part: Edmondson, S. D.
Abstract 99, 227th National Meeting of the ACS, Ana-
heim, CA, March 2004.
1
8. All final compounds were characterized by H NMR and
LC–MS.
9. IC50 determinations for DPP-IV and other proline pep-
tidases were carried out as described in: Leiting, B.; Pryor,
K. D.; Wu, J. K.; Marsilio, F.; Patel, R. A.; Craik, C. S.;
Ellman, J. A.; Cummings, R. T.; Thornberry, N. A.
Biochem. J. 2003, 371, 525.
10. In the case of the a-methyl series the stereochemistry was
confirmed by synthesis of optically pure derivatives via
Mitsunobu reaction of 8 with R- or S-lactic acid esters. In
the case of the isopropyl substituent stereochemistry was
confirmed by X-ray crystal structure of 37.
11. (a) As described in Ref. a optically active b-amino acids 5
were prepared using Schollkopfꢀs synthesis of a-amino
acids followed by Arndt–Eistert homologation. See:
Schollkopf, U. Tetrahedron 1983, 39, 2085; (b) Podlech,
J.; Seebach, D. Liebigs Ann. 1995, 1217.
References and notes
1. (a) For lead references, See: Drucker, D. J. Exp. Opin.
Investig. Drugs 2003, 12, 87–100; (b) Wiedeman, P. E.;
Trevillyan, J. M. Curr. Opin. Investig. Drugs 2003, 4,
412–420; (c) Augustyns, K.; Van der Veken, P.; Senten,
K.; Haemers, A. Expert Opin. Ther. Patents 2003, 13,
499–510; (d) Weber, A. E. J. Med. Chem. 2004, 47, 4135.
2. (a) Reimer, M. K.; Holst, J. J.; Ahren, B. Eur. J.
Endocrinol. 2002, 146, 717; (b) Pospisilik, J. A.; Martin,
J.; Doty, T.; Ehses, J. A.; Pamir, N.; Lynn, F. C.; Piteau,
S.; Demuth, H.-U.; McIntosh, C. H. S.; Pederson, R. A.
Diabetes 2003, 52, 741.
12. Williams, J. W.; Morrison, J. F. Methods Enzymol. 1979,
6, 437.
13. (a) For lead references, see: Sedo, A.; Malik, R. Biochim.
Biophys. Acta 2001, 1550, 107; (b) Rosenblum, J. S.;
Kozarich, J. W. Curr. Opin. Chem. Biol. 2003, 7, 496.
14. Friesen, R. W.; Ducharme, Y.; Ball, R. G.; Blouin, M.;
Boulet, L.; Cote, B.; Frenette, R.; Girard, M.; Guay, D.;
Huang, Z.; Jones, T. R.; Laliberte, F.; Lynch, J. J.;
Mancini, J.; Martins, E.; Masson, P.; Muise, E.; Pon, D.
J.; Siegel, P. K. S.; Styhler, A.; Tsou, N. N.; Turner, M. J.;
Young, R. N.; Girard, Y. J. Med. Chem. 2003, 46, 2017.
15. Lankas, G.; Leiting, B.; Sinha Roy, R.; Eiermann, G.;
Biftu, T.; Kim, D.; Ok, H.; Weber, A. E.; Thornberry, N.
A. Diabetes 2004, 53(S2), A2.
3. During, M. J.; Cao, L.; Zuzga, D. S.; Francis, J. S.;
Fitzsimons, H. L.; Jiao, X.; Bland, R. J.; Klugmann, M.;
Banks, W. A.; Drucker, D. J.; Haile, C. N. Nature Med.
2003, 9, 1173.