Synthesis of Novel
a
-C-Glycosylamino Acids
2277
stereoselective synthesis of ethylene isosterers of
a-
150 MHz)
d
: 20.8, 28.1, 28.9, 51.8, 54.2, 68.0, 69.4,
and
b-glycosylasparagines. Tetrahedron Lett., 41,
71.9, 72.1, 72.3, 72.7, 74.2, 75.9, 78.6, 79.4, 79.8,
114.6, 121.6, 124.6, 127.3, 127.3, 127.3, 127.4,
127.5, 127.6, 127.7, 128.2, 128.3, 134.1, 136.3,
3483–3486 (2000).
12) Turner, J. J., Leeuwenburgh, M. A., van der Marel,
G. A., and van Boom, J. H., A convenient route to a-
138.5, 145.1, 172.3. MS(FAB) m z 995 (M+H).
HRMS(FAB): calcd. for C58H63N2O11S (M+H),
995.4153; found, 995.4075.
W
amino acids with b-alkyne substituents from a serine
derived aziridine. Tetrahedron Lett., 42, 8713–8716
(2001).
13) Church, N. J., and Young, D. W., Synthesis of
Acknowledgments
stereospeciˆcally labeled
D
-prop-2-ynylglycine and in-
-amino acid oxidase. J.
vestigation of the action of
D
We are grateful to Professor J. M. Cook (Univer-
sity of Wisconsin-Milwaukee) for valuable discussion
and encouragement to publish our preliminary
results. We also thank Mr. K. Koga (analytical
laboratory in this school) for measurement of 2D
NMR spectra. This work was ˆnancially supported
by JSPS-RFTF (96L00504) and by a Grant-in-Aid
for Scientiˆc Research from the Ministry of Educa-
tion, Science, Sports, and Culture of Japan (No.
12760077).
Chem. Soc. Chem. Commun., 943–944 (1994).
14) Bajgrowicz, J. A., Hallaoui, A. El., Jacquier, R.,
Pigiere, Ch., and Viallefont, Ph., Lithium dior-
ganocuprate reactions with
L
-serine derivatives.
Tetrahedron Lett., 25, 2759–2762 (1984).
15) Dureault, A., Tranchenpain, I., and Depezay, J.-C.,
Nucleophilic opening of chiral bis(aziridines): A route
to enantiomerically pure a-amino aldehyde or acids
and polysubstitiuted piperidines. J. Org. Chem., 54,
5324–5330 (1989).
16) Church, N. J., and Young, D. W., Synthesis of the
suicide substrate D-propargylglycine stereospeciˆcally
References
labeled with deuterium and investigation of its oxida-
tion by -amino acid oxidase. J. Chem. Soc. Perkin
D
1) Dondoni, A., and Marra, A., Methods for anomeric
carbon-linked and fused sugar amino acid synthesis:
The gateway to artiˆcial glycopeptides. Chem. Rev.,
100, 4395–4421 (2000).
Trans 1, 8, 1475–1482 (1998).
17) Knochel, P., Chou, T.-S., Chen, H. G., Yeh, M. C.
P., and Rozema, M. J., Nucleophilic reactivity of
zinc and copper carbenoids, 2. J. Org. Chem., 54,
5202–5204 (1989).
2) Nishikawa, T., Ishikawa, M., and Isobe, M., Synthe-
sis of a
a
-
C
-mannosyltryptophan derivative, naturally
-glycosyl amino Acid found in human
18) Yeh, M. C., and Knochel, P., The reactivity of the
highly functionalized copper, zinc reagents
RCu(CN)ZnI toward 1-haloalkynes and acetylenic es-
ters. Tetrahedron Lett., 30, 4799–4802 (1989).
19) Dunn, N. J., Jackson, R. F. W., Pietruszka, J.,
Wishart, N., Ellis, D., and Wythes, M. J., Prepara-
tion of serine-derived organozinc reagents in tetra-
hydrofuran: Synthesis of novel enantiomerically pure
allenic, acetylenic and heteroaryl amino acids. Syn-
lett, 499–500 (1993).
occurring
C
ribonuclease. Synlett, 123–125 (1999).
3) Nishikawa, T., Ishikawa, M., Wada, K., and Isobe,
M., Total synthesis of
naturally occurring
945–947 (2001).
a
-
C
-mannosyltryptophan, a
C
-glycosylamino acid. Synlett,
4) For another total synthesis by the RIKEN group, see:
Manabe, S., and Ito, Y., Total synthesis of novel
subclass of glyco-amino acid structure motif: C2-
a-L-
C
-mannosylpyranosyl-
L
-tryptophan. J. Am. Chem.
20) Dunn, N. J., Jackson, R. F. W., Pietruszka, J., and
Turner, D., Synthesis of enantiomerically pure
Soc., 121, 123–125 (1999).
5) Vliegenthart, J. F. G., and Casset, F., Novel forms of
protein glycosylation. Current Opinion in Structural
Biology, 8, 565–571 (1998).
6) Furmanek, A., and Hofsteenge, J., Protein C-man-
nosylation: Facts and questions. Acta Biochimica
Polonica, 47, 781–789 (2000).
unsaturated a-amino acids using serine-derived zinc
copper reagents. J. Org. Chem., 60, 2210–2215
(1995).
W
21) Southwick, P. L., and Kirchner, J. R., The mor-
pholine-iodophenylacetylene adduct or charge-tran-
sfer complex. Formation and conversion to
N-
7) Larock, R. C., and Yum, E. K., Synthesis of indoles
via palladium-catalyzed heteroannulation of internal
alkynes. J. Am. Chem. Soc., 113, 6689–6690 (1991).
8) Larock, R. C., Yum, E. K., and Refvik, M. D.,
Synthesis of 2,3-disubstituted indoles via palladium-
catalyzed annulation of internal alkynes. J. Org.
Chem., 63, 7652–7662 (1998).
9) Isobe, M., Nishizawa, R., Hosokawa, S., and
Nishikawa, T., Stereocontrolled synthesis and
reactivity of sugar acetylene. Chem. Commun.,
2665–2676 (1998).
styrylmorpholine. J. Org. Chem., 27, 3305–3308
(1962).
22) This material was prepared by Kishi and co-workers
in a diŠerent way. See: Goekjian, P. G., Wu, T.-C.,
Kang, H.-Y., and Kishi, Y., Preferred conformation
of
C-glycosides. 7. Preferred conformation of carbon
analogues of isomaltose and gentiobiose. J. Org.
Chem., 56, 6422–6434 (1991).
23) Tamaru, Y., Tanigawa, H., Yamamoto, T., and
Yoshida, Z., Copper(I)-promoted Michael-addition
reaction of organozincs of esters, nitriles, and a-ami-
10) Isobe, M., and Kira, K., New synthesis with acetylene
biscobalthexacarbonyl complex. J. Synth. Org.
Chem. Jpn. (in Japanese), 58, 23–30, 99–107 (2000).
11) Dondoni, A., Mariotti, G., and Marra, A., General,
no acids. Angew. Chem. Int. Ed., 28, 351–353 (1989).
24) Knochel, P., and Singer, R. D., Preparation and
reactions of polyfunctional organozinc reagents in or-
ganic synthesis. Chem. Rev., 93, 2117–2188 (1993).