2448
H. V. Bailey et al.
LETTER
(7) Indeed, laboured and inefficient reactions are often
encountered in reductive aminations with anilines, see
reference 3 for examples.
(8) Brown, H. C. In Determination of Organic Structures by
Physical Methods; Braude, E. A.; Nachod, F. C., Eds.;
Academic Press: New York, 1955.
tolerated by our system. A further advantage of this pro-
cedure is that inert atmospheric conditions are not neces-
sary. This, coupled with only minimal work-up and
straightforward flash column chromatography, means that
the reactions are operationally very simple.
(9) Hall, H. K. Jr. J. Am. Chem. Soc. 1957, 79, 5441.
(10) For an overview of pKa data in water, see: CRC Handbook
of Chemistry and Physics, 86th ed.; Lide, D. R., Ed.; CRC
Press: Boca Raton, FL, 2005–2006.
(11) For recent overviews on microwave chemistry, see:
(a) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.
(b) Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J.
Tetrahedron 2001, 57, 9225. (c) Tierney, J. P.; Lidstrom, P.
Microwave-Assisted Organic Chemistry; Blackwell
Publishing: Oxford, 2005.
(12) (a) For examples using tin Lewis acids and silanes, see:
Kangasmetsa, J. J.; Johnson, T. Org. Lett. 2005, 7, 5653.
(b) For Pt/C examples, see: Miyazawa, A.; Saitou, K.;
Tanaka, K.; Gadda, T. M.; Tashiro, M.; Prakash, G. K. S.;
Olah, G. A. Tetrahedron Lett. 2006, 47, 1437. (c) For
examples on wet clay, see: Varma, R. S.; Dahiya, R.
Tetrahedron 1998, 54, 6293.
(13) CEM Microwave Technology Ltd., 2 Middle Slade,
Buckingham Industrial Park, MK18 1WA, UK; http://
In conclusion, we have demonstrated that modern focused
microwave reactors are readily utilisable and are reliable
tools for the promotion of the direct reductive amination
of both electron-rich and electron-poor anilines. The use
of this technique results in the formation of functionalised
anilines that are potentially very interesting scaffolds for
the design of drug-like molecules. Indeed, this technique
results in rapid and efficient access to a vast array of very
interesting and versatile aromatic amines.
Acknowledgment
This research was supported by Sterix Ltd., a member of the Ipsen
group. We would also like to thank Ms A. Smith for assistance with
HPLC and LCMS analysis and the ESPRC National Mass Spectro-
metry Service Centre at the University of Wales, Swansea.
References and Notes
(14) Hayes, B. L. Microwave Synthesis: Chemistry at the Speed
of Light; CEM Publishing: Matthews, NC, 2002.
(15) Commercially available from Biotage.
(1) For indirect reductive aminations using a variety of metal
reducing agents, see: (a) Basu, B.; Jha, M. S.; Bhuiyan, M.
H.; Das, P. Synlett 2003, 555. (b) Firouzabadi, H.; Iranpoor,
N.; Alinezhad, H. Bull. Chem. Soc. Jpn. 2003, 76, 143.
(c) Samec, J. S. M.; Bäckvall, J.-E. Chem. Eur. J. 2002, 8,
2955. (d) Ranu, B. C.; Majee, A.; Sarkar, A. J. Org. Chem.
1998, 63, 370. (e) Mattson, R. J.; Pham, K. M.; Leuck, D. J.;
Cowen, K. A. J. Org. Chem. 1990, 55, 2552; and references
cited therein.
(2) For organocatalytic examples, see: (a) Menche, D.;
Hassfield, J.; Li, J.; Menche, G.; Ritter, A.; Rudolph, S. Org.
Lett. 2006, 8, 741. (b) Menche, D.; Arikan, F. Synlett 2006,
841. (c) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2006, 128, 84.
(3) For direct reductive aminations using a variety of metal
reducing agents, see: (a) Alinezhad, H.; Tajbakhsh, M.;
Zamani, R. Synlett 2006, 431. (b) Sato, S.; Sakamoto, T.;
Miyazawa, E.; Kikugawa, Y. Tetrahedron 2004, 60, 7899.
(c) Berdini, V.; Cesta, M. C.; Curti, R.; D' Anniballe, G.; Di
Bello, N.; Nano, G.; Nicolini, L.; Topai, A.; Allegretti, M.
Tetrahedron 2002, 58, 5669. (d) Apodaca, R.; Xiao, W.
Org. Lett. 2001, 3, 1745. (e) Saxena, I.; Borah, R.; Sarma, J.
C. J. Chem. Soc., Perkin Trans. 1 2000, 503. (f) Micovic, I.
V.; Ivanovic, M. D.; Piatak, D. M.; Bojic, V. D. Synthesis
1991, 1043; and references cited therein.
(4) (a) Borch, R. F.; Bernstein, M. D.; Dupont Durst, H. J. Am.
Chem. Soc. 1971, 93, 2897. For a review on sodium
cyanoborohydride, see: (b) Lane, C. F. Synthesis 1975, 135.
(5) Gribble, G. W.; Ferguson, D. C. Chem. Commun. 1975, 535.
(6) (a) Abdel-Magid, A.; Maryanoff, C. A. Synlett 1990, 537.
(b) Abdel-Magid, A.; Maryanoff, C. F.; Carson, K. G.
Tetrahedron Lett. 1990, 31, 5595. (c) Abdel-Magid, A.;
Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D.
J. Org. Chem. 1996, 61, 3849. (d) Zhao, M.; Yin, J.;
Huffman, M. A.; McNamara, J. M. Tetrahedron 2006, 62,
1110. (e) Zhang, J.; Blazecka, P. G.; Davidson, J. G. Org.
Lett. 2003, 5, 553.
(16) The acetic acid is believed to protonate the intermediate
imine which assists in its reduction, see reference 6.
(17) Representative experimental procedure for the reductive
amination of ketones: To a solution of aniline (100 mg, 1.07
mmol) and cyclohexanone (210 mg, 2.14 mmol) in DCE (2.1
mL) in a microwave vial, was added NaBH(OAc)3 (567 mg,
2.68 mmol) and AcOH (193 mg, 3.21 mmol). The vial was
capped and the resulting solution was heated in a CEM
Discover® microwave for ten minutes (fixed hold time) at
140 °C. The reaction was quenched with NaHCO3 (10 mL,
sat. aq) and then extracted with CH2Cl2 (3 × 20 mL). The
combined organic phases were dried (MgSO4), filtered and
concentrated in vacuo. Purification by flash column
chromatography (eluting with CH2Cl2) gave
cyclohexylphenylamine as a viscous oil (177 mg, 94%).19
(18) It should be noted that in these cases the starting aniline was
not isolated.
(19) All known compounds exhibited spectroscopic data
consistent with that reported in the chemical literature.
(20) All new compounds exhibited the expected NMR, HPLC,
LCMS and IR data which will be reported in a full
publication in due course.
(21) Representative experimental procedure for the reductive
amination of aldehydes: To a solution of aniline (200 mg, 2.2
mmol) and cyclohexanecarbaldehyde (123 mg, 1.1 mmol) in
DCE (2.1 mL) in a microwave vial, was added NaBH(OAc)3
(567 mg, 2.68 mmol) and AcOH (193 mg, 3.21 mmol). The
reaction was then subjected to the same procedure described
in reference 17. Purification gave cyclohexylmethylphenyl-
amine as a viscous oil (185 mg, 91%).19
(22) Solé, D.; Vallverdú, L.; Solans, X.; Font-Bardia, M.;
Bonjoch, J. J. Am. Chem. Soc. 2003, 125, 1587.
(23) Staub, G. M.; Gloer, J. B.; Dowd, P. F.; Wicklow, D. T. J.
Am. Chem. Soc. 1992, 114, 1015.
(24) Quetin-Leclercq, J.; Angenot, L.; Dupont, L.; Dideberg, O.;
Warin, R.; Delaude, C.; Coune, C. Tetrahedron Lett. 1991,
32, 4295.
Synlett 2006, No. 15, 2444–2448 © Thieme Stuttgart · New York