Syntheses of Trifluoromethanethiolato Platinum(II) Complexes
crude material dried. The composition of the crude material was
determined to consist of 4 % cis-Pt(SCF3)Cl(PPh3)2, 92 %
cis-Pt(SCF3)2(PPh3)2 and 4 % of the starting material,
cis-PtCl2(PPh3)2.
Table 2 Crystal Data and Structure Refinement Parameters for
cis-Pt(SCF3)2(PPh3)2 (1) and trans-Pt(SCF3)Cl(PPh3)2 ·2CH2Cl2 (2)
1
2
empirical formula
C38H30F6P2S2Pt
C39H34F3P2SCl5Pt
1026.00
formula mass / g molϪ1 921.77
Attempted synthesis of [NMe4][Pt(SCF3)3(PPh3)]
data collection
diffractometer
radiation
temperature / K
index range
STOE IPDS II
Mo-Kα (graphite monochromator, λ ϭ 71.073 pm)
150(2)
Ϫ11 Յ h Յ 12
Ϫ25 Յ k Յ 25
Ϫ12 Յ l Յ 12
STOE IPDS II
To a solution of 0.79 g (1.0 mmol) cis-PtCl2(PPh3)2 in 10 mL
MeCN, 0.57 g (3.3 mmol) [NMe4]SCF3 were added. Stirring was
continued for 24 hours. After this period, two multiplets in the
150(2)
Ϫ20 Յ h Յ 20
Ϫ18 Յ k Յ 18
Ϫ22 Յ l Յ 22
integrative ratio 1:2 were detected for the anion beside the low-
Ϫ
intensity resonances of cis-Pt(SCF3)2(PPh3)2 and SCF3
.
rotation angle range
0° Յ ω Յ 180°; γ ϭ 0° 0° Յ ω Յ 180°; γ ϭ 0°
3
4
19F NMR (MeCN): δ ϭ Ϫ20.2 (m, 3F, JPt, F ϭ 77 Hz; JP, F
ϭ
0° Յ ω Յ 180°; γ ϭ 90° 0° Յ ω Յ 29°; γ ϭ 90°
3
4
increment
no. of images
Δω ϭ 1°
360
Δω ϭ 1°
209
14 Hz), Ϫ23.0 (m, 6F, JPt, F ϭ 88 Hz; JP, F ഠ 1 Hz).
exposure time / min
detector distance / mm
2θ range / deg
total data collected
unique data
observed data
Rmerg
4
120
1.9 Ϫ 54.8
24365
7654
7345
0.0735
4
120
1.9 Ϫ 54.8
33936
8286
7071
0.0346
Syntheses of trans-Pt(SCF3)Cl(PPh3)2 and trans-
Pt(SCF3)2(PPh3)2
0.35 g (1.0 mmol) cis-PtCl2(MeCN)2 were dissolved in 10 mL
MeCN. 0.19 g (1.1 mmol) respective 0.38 g (2.2 mmol)
[NMe4]SCF3 were added. 0.52 g (2.0 mmol) PPh3 were added to
both reaction mixtures. After one hour stirring was terminated, all
insoluble material was filtered off and all volatile materials were
removed in vacuo giving raw materials of the composition
92 % trans-Pt(SCF3)Cl(PPh3)2 and 8 % trans-Pt(SCF3)2(PPh3)2,
respectively 8 % trans-Pt(SCF3)Cl(PPh3)2 and 92 % trans-
Pt(SCF3)2(PPh3)2.
absorption correction
transmission min / max 0.2244 / 0.5848
numerical, after crystal shape optimization [20, 21]
0.3673 / 0.6493
crystallographic data
crystal size / mm
colour, habit
crystal system
space group
a / pm
b / pm
c / pm
0.3·0.3·0.2
yellow, block
monoclinic
P21 (no. 4)
954.4(1)
1992.1(1)
1011.6(1)
111.07(1)
1794.7(2)
2
0.2·0.2·0.1
yellow, polyhedron
monoclinic
P21/c (no. 14)
1567.9(1)
1481.5(1)
1787.3(1)
114.61(1)
3774.2(3)
4
β / deg
NMR data of all compounds are summarized in Table 1.
volume / 106 pm3
Z
ρcalc / g cmϪ3
μ / mmϪ1
F(000)
1.706
4.173
904
1.806
4.257
2016
Acknowledgement. This work was generously supported by the
Deutsche Forschungsgemeinschaft (436 UKR 113).
structure analysis and
refinement*
structure determination
no. of variables
References
SIR-92 [22] and SHELXL-97 [23]
466
444
[1] K. R. Dixon, K. C. Moss, M. A. R. Smith, J. Chem. Soc.,
Dalton Trans. 1973, 1528Ϫ1532.
[2] K. R. Dixon, K. C. Moss, M. A. R. Smith, J. Chem. Soc.,
Dalton Trans. 1974, 971Ϫ977.
[3] K. R. Dixon, K. C. Moss, M. A. R. Smith, J. Chem. Soc.,
Dalton Trans. 1975, 990Ϫ998.
[4] W. Tyrra, D. Naumann, B. Hoge, Yu. L. Yagupolskii, J. Fluor-
ine Chem. 2003, 119, 101Ϫ107.
R indexes [I>2σ(I)]
R1 ϭ 0.0479
wR2 ϭ 0.1051
R1 ϭ 0.0516
wR2 ϭ 0.1085
1.058
R1 ϭ 0.0334
wR2 ϭ 0.0856
R1 ϭ 0.0399
wR2 ϭ 0.0881
1.022
R indexes (all data)
goodness of fit (Sall
Flack x
)
Ϫ0.028(8)
Ϫ
largest difference map
hole / peak / e 10Ϫ6pmϪ3 Ϫ3.467 / 1.703
Ϫ1.643 / 2.348
CCDC-275937
Deposition number [24] CCDC-275940
[5] M. M. Kremlev, W. Tyrra, D. Naumann, Yu. L. Yagupolskii,
Tetrahedron Lett. 2004, 45, 6101Ϫ6104.
[6] D. Naumann, N. V. Kirij, N. Maggiarosa, W. Tyrra, Yu. L.
Yagupolskii, M. S. Wickleder, Z. Anorg. Allg. Chem. 2004,
630, 746Ϫ751.
R1 ϭ ΣʈFoΗϪΗFcʈ / Σ ΗFoΗ, wR2 ϭ [Σ w (ΗFoΗ2ϪΗFcΗ2)2 / Σ w (ΗFoΗ2)2]1/2
Σ2 ϭ [Σ w (ΗFoΗ2ϪΗFcΗ2)2 / (nϪp)]1/2, with w ϭ 1 / [σ2 (Fo)2
(0.0392·P)2 ϩ 13.4186·P] for (1) and w ϭ 1 / [σ2 (Fo)2 ϩ (0.0643·P)2]
,
ϩ
for (2), were P ϭ (Fo ϩ 2Fc ) / 3. Fc* ϭ k Fc [1ϩ0,001·ΗFcΗ2 λ3 /
2
2
sin(2θ)]Ϫ1/4
.
´
´
´
[7] J. Forniees-Camer, A. Aaliti, N. Ruiz, A. M. Masdeu-Bulto, C.
Claver, C. J. Cardin, J. Organomet. Chem. 1997, 530, 199Ϫ209.
[8] S. A. Bryan, D. M. Roundhill, Acta Crystallogr. 1983, C39,
184Ϫ186; M. J. G. Lesley, W. Clegg, T. B. Marder, N. C.
Norman, A. G. Orpen, A. J. Scott, J. Starbuck, Acta Crys-
tallogr. 1999, C55, 1272Ϫ1275; U. Belluco, R. Bertani, R. A.
Michelin, M. Mozzon, G. Bombieri, F. Benetollo, Gazz. Chim.
Ital. 1994, 124, 487Ϫ495; D. S. Dudis, C. King, J. P. Fackler,
jr., Inorg. Chim. Acta 1991, 181, 99Ϫ102; C. E. Keefer, S. T.
Purrington, R. D. Bereman, B. W. Knight, D. R. Bedgood, jr.,
P. D. Boyle, Inorg. Chim. Acta 1998, 282, 200Ϫ208.
* All H atoms (except the hydrogen atoms for the CH2Cl2 molecu-
les in (2)) were placed in idealized positions and constrained to ride
on their parent atom. The position of one CH2Cl2 molecule in (2)
referring to C3, Cl31 and Cl32 has an occupancy factor of 0.35.
This is in accordance with the maximum of 0.5 to avoid too short
interatomic distances of the two crystallographic equivalent Cl-
atoms (Cl31 and Cl32), respectively.
cis-PtCl2(PPh3)2 in 10 mL CH2Cl2 at room temperature. The mix-
ture was stirred for 60 minutes. [NMe4]Cl was filtered off and the
Z. Anorg. Allg. Chem. 2006, 284Ϫ288
© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
zaac.wiley-vch.de
287