C O M M U N I C A T I O N S
Scheme 1
(2) (a) Cowley, A. H. Acc. Chem. Res. 1997, 30, 445. (b) Cowley, A. H.;
Pellerin, B. J. Am. Chem. Soc. 1990, 112, 6734. (c) Breen, T. L.; Stephan,
D. W. J. Am. Chem. Soc. 1995, 117, 11914. (d) Bonanno, J. B.;
Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1994, 116, 11159.
(e) Cummins, C. C.; Schrock, R. R.; Davis, W. M. Angew. Chem., Int.
Ed. Engl. 1993, 32, 756. (f) Arney, D. S. J.; Schnabel, R. C.; Scott, B.
C.; Burns, C. J. J. Am. Chem. Soc. 1996, 118, 6780.
(3) (a) Ehlers, A. W.; Baerends, E. J.; Lammertsma, K. J. Am. Chem. Soc.
2002, 124, 2831. (b) Grigoleit, S.; Alijah, A.; Rozhenko, A. B.; Streubel,
R.; Schoeller, W. W. J. Organomet. Chem. 2002, 643-644, 223. (c) Creve,
S.; Pierloot, K.; Nguyen, M. T.; Vanquickenborne, L. G. Eur. J. Inorg.
Chem. 1999, 107. (d) Ehlers, A. W.; Lammertsma, K.; Baerends, E. J.
Organometallics 1998, 17, 2738. (e) Frison, G.; Mathey, F.; Sevin, A. J.
Organomet. Chem. 1998, 570, 225.
to phosphorus from the metal or the phosphorus substituent,
electrophilic terminal phosphinidene complexes, even of first row
metals, are not fundamentally unstable.
(4) Dillon, K. B.; Mathey, F.; Nixon, J. F. Phosphorus: The Carbon Copy;
John Wiley & Sons, Ltd.: Chichester, 1998; pp 19-32.
(5) (a) Sava, X.; Marinetti, A.; Ricard, L.; Mathey, F. Eur. J. Inorg. Chem.
2002, 2002, 1657. (b) Tran Huy, N. H.; Compain, C.; Ricard, L.; Mathey,
F. J. Organomet. Chem. 2002, 650, 57. (c) Vlaar, M. J. M.; Valkier, P.;
Schakel, M.; Ehlers, A. W.; Lutz, M.; Spek, A. L.; Lammertsma, K. Eur.
J. Org. Chem. 2002, 1797. (d) Vlaar, M. J. M.; van Assema, S. G. A.; de
Kanter, F. J. J.; Schakel, M.; Spek, A. L.; Lutz, M.; Lammertsma, K.
Chem.-Eur. J. 2002, 8, 58. (e) Lammertsma, K.; Vlaar, M. J. M. Eur. J.
Org. Chem. 2002, 1127. (f) Mathey, F.; Tran Huy, N. H.; Marinetti, A.
HelV. Chim. Acta 2001, 84, 2938.
(6) Sterenberg, B. T.; Udachin, K. A.; Carty, A. J. Organometallics 2001,
20, 4463.
(7) Sterenberg, B. T.; Udachin, K. A.; Carty, A. J. Organometallics 2001,
20, 2657.
The electrophilicity of complex 2 has been demonstrated by its
reaction with diphenyl acetylene to form the phosphirene complex
[Co(CO)3(PPh3){P(NiPr2)C(Ph)C(Ph)}][AlCl4] (3).15 This reactivity
toward alkynes thus parallels the behavior of transient electrophilic
phosphinidene complexes.4,16,17 An ORTEP diagram of the cation
of 3 (Figure 1) again displays trigonal bipyramidal geometry at
cobalt with the two phosphorus ligands occupying the axial
positions. The alkyne has added to the phosphinidene phosphorus,
forming a three-membered ring. The Co-P(1) distance of 2.2235-
(3) Å is very close to the cobalt-triphenylphosphine distance of
2.2320(3) Å. The P-C distances within the ring are 1.7635(6) and
1.7561(6) Å, and the CdC distance is 1.3396(9) Å. The angles
within the ring are 67.34(3)°, 67.92(3)°, and 44.74(3)°, respectively,
at C(11), C(12), and P(1). The diisopropyl-amino group is oriented
similar to that in 2, and the P-N bond distance of 1.659(2) Å is
now consistent with a single bond, indicating that N to P donation
is no longer necessary to stabilize the phosphorus center.
(8) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and
Applications of Organotransition Metal Chemistry; University Science
Books: Mill Valley, 1987; pp 120-129.
(9) Melenkivitz, R.; Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2002,
124, 3846.
(10) Termaten, A. T.; Nijbacker, T.; Schakel, M.; Lutz, M.; Spek, A. L.;
Lammertsma, K. Organometallics 2002, 21, 3196.
(11) Data for [Co(CO)3(PPh3){P(Cl)NiPr2}] (1): 1H NMR (CDCl3) δ 7.4-7.7
(m, 15H, PPh3), 4.1 (b, 2H, CH), 1.43 (d, 6H, 3J(HH) ) 6.7 Hz, CH3),
1.26 (d, 6H, 3J(HH) ) 6.7, CH3). 31P NMR (CDCl3) δ 282.8 (d, P(Cl)-
NiPr2), 54.1 (d, PPh3), 2J(PP) ) 24 Hz. IR (νCO) 2000m, 1977s, 1967s
cm-1. Anal. Calcd for C28H31NO3P2Cl3Co: C, 51.20; H, 4.76; N, 2.13.
Found: C, 51.58; H, 5.31; N, 2.21. X-ray data: monoclinic, P2(1)/n, a
) 11.8269(8), b ) 19.988(1), c ) 14.214(1), â ) 112.229(1), V ) 3110.5-
(4), Z ) 4, Dcalc ) 1.402, T ) 173(2) K, 8041 independent reflections
[R(int) ) 0.0343], R ) 0.0393, wR2 ) 0.0974.
The 31P NMR spectrum of 3 shows two doublets with a peak at
δ -76.6 showing the characteristic high-field shift of the phos-
phorus nucleus in a phosphirene ring.18 The coupling constant is
140 Hz, typical of a trans arrangement of the phosphorus ligands.
(12) Data for [Co(CO)3(PPh3)(PNiPr2)][AlCl4] (2): 1H NMR (CDCl3) δ 7.4-
7.7 (m, 15H, PPh3), 5.66 (sept., 1H, 3J(HH) ) 6.3 Hz, CH), 4.75 (b, 1H,
CH), 1.67 (d, 6H, 3J(HH) ) 6.3, CH3), 1.58 (d, 6H, 3J(HH) ) 6.5 Hz).
31P NMR (CDCl3) δ 861.2 (s, PNiPr2), 47.6 (PPh3). IR (νCO) 2029s, 2017s
cm-1. Anal. Calcd for C27H29NO3P2AlCl4Co: C, 45.99; H, 4.14; N, 1.99.
Found: C, 45.53; H, 4.25; N, 2.06. X-ray data: orthorhombic, P2(1)2-
(1)2(1), a ) 12.5260, b ) 12.8291(6), c ) 20.424(1), V ) 3282.1(3), Z
) 4, Dcalc ) 1.427, T ) 173(2) K, 8516 independent reflections [R(int)
) 0.0392], R ) 0.0379, wR2 ) 0.0819.
1
The H NMR spectrum shows single resonances for the CH and
CH3 hydrogen atoms of the isopropyl groups, indicating free rotation
about the PN bond, again consistent with a P-N single bond.
In summary, the first terminal cobalt phosphinidene complex has
been isolated. The complex is stable despite a lack of steric
protection, and its structural and spectroscopic parameters clearly
show that the phosphinidene ligand is stabilized by a donor
interaction with the amino substituent. The electrophilicity of the
phosphinidene complex has been demonstrated in its reaction with
diphenylacetylene.
(13) (a) Lang, H.; Eberle, U.; Leise, M.; Zsolnai, L. J. Organomet. Chem.
1996, 519, 137. (b) Lang, H.; Orama, O. J. Organomet. Chem. 1989, 371,
C48.
(14) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.;
Taylor, R. J. Chem. Soc., Dalton Trans. 1989, S1.
(15) Data for [Co(CO)3(PPh3){P(NiPr2)C(Ph)dC(Ph)}][AlCl4]‚CH2Cl2 (3): 1H
NMR (CDCl3) 7.3-7.9 (m, 25H, Ph), 3.80 (d septets, 2H, 3J(HH) ) 6.7
Hz, 3J(HP) ) 6.2, CH), 1.25 (d, 12H, 3J(HH) ) 6.7 Hz). 31P NMR (CDCl3)
δ 54.4 (d, PPh3, 2J(PP) ) 140 Hz), -76.6 (d, PC2, 2J(PP) ) 140 Hz). IR
(νCO) 2019s, 2001s cm-1. Anal. Calcd for C42H41O3P2NAlCl6Co: C,
52.09; H, 4.27; N, 1.45. Found: C, 51.26; H, 4.66; N, 1.55. X-ray data:
triclinic, P-1, a ) 12.3668(5), b ) 13.0461(6), c ) 15.9147(7), R )
Acknowledgment. This work was supported by the National
Research Council of Canada and grants from the Natural Sciences
and Engineering Research Council of Canada (to A.J.C.) and an
NRC-NSERC Canadian Government Laboratories Visiting Fel-
lowship (to B.T.S.).
88.193(1), â ) 75.292(1), γ ) 73.836(1), V ) 2383.2(2), Z ) 2, Dcalc
)
1.290, T ) 173(2) K, 12 275 independent reflections [R(int) ) 0.0284],
R ) 0.0487, wR2 ) 0.1650.
(16) Marinetti, A.; Mathey, F. J. Am. Chem. Soc. 1982, 104, 4484.
(17) Although we initially favored a (2 + 2) cycloaddition of the alkyne to
the cationic phosphinidene complex [Cp*Mo(CO)3(η1-PNiPr2)]+ on the
basis of spectroscopic data alone, further work has shown that the product
of this reaction is in fact a phosphirene rather than a metallocycle. See:
Sterenberg, B. T.; Carty, A. J. J. Organomet. Chem. 2001, 617-618, 696.
Supporting Information Available: Synthetic procedures, analyti-
cal, spectroscopic, and crystallographic data for compounds 1-3 (PDF
and CIF). This material is available free of charge via the Internet at
References
(18) Mathey, F. Chem. ReV. 1990, 90, 997.
(1) Hitchcock, P. B.; Lappert, M. F.; Leung, W.-P. J. Chem. Soc., Chem.
Commun. 1987, 1282.
JA028303B
9
J. AM. CHEM. SOC. VOL. 125, NO. 9, 2003 2405