3
Based on the experimental results, a proposed pathway of this
reaction is outlined in Scheme 3. In step 1, in the presence of
base, the reaction of arylmethyl bromide with arylamidine
produces intermediate A, which tautomerizes to B. Then, the
nucleophilic attack of elemental sulfur to nitrogen atom in amino
takes place leading to intermediate C.15 After the tautomerization
of C to D, the intermolecular nucleophilic attack of sulfur atom
to imino group provides cyclized intermediate E. Afterwards,
intermediate E transforms to intermediate F by the elimination of
Supplementary data
Supplementary data associated with this article can be found,
in the online version, at
References and notes
† Changzhou University
‡
Wenzhou University
-
S7 . Finally, the oxidation of intermediate F by sulfur furnishes
1
For reviews, see: (a) Srivastava, S.; Prasad, R. K.; Saini, R. World J.
Pharm. Pharm. Sci. 2014, 3, 1198. (b) Chiacchio, U.; Romeo, G. In
Modern Heterocyclic Chemistry; Alvarez-Builla, J.; Vaquero, J. J.;
Barluenga, J., Eds.; Wiley: 2011; Vol. 3, pp 1253-1400. (c) Castro, A.;
the final product 3,5-diaryl-1,2,4-thiadiazone (path a).
Alternatively, in the presence of DMSO, the Kornblum oxidation
of benzyl bromide produces aldehyde,16 which annulates with
amidine to provide intermediate A’. Then, the nucleophilic attack
of elemental sulfur takes place leading to intermediate B’. After
that, the nucleophilic attack of sulfur atom to nitrogen atom
provides intermediate E (path b).
Castano, T.; Encinas, A.; Porcal, W.; Gil, C. Bioorg. Med. Chem. 2006,
14, 1644. (d) Tam, T. F.; Leung-Toung, R.; Li, W.; Spino, M.;
Karimian, K. Mini-Rev. Med. Chem. 2005, 5, 367. (e) Wilkins, D. J.;
Bradley, P. A. In Science of Synthesis; George Thieme: Stuttgart, 2004,
Vol. 13, pp 277-295. (f) Kumita, I. Nippon Noyaku Gakkaishi 2002, 27,
404. (g) Wilkins, David J.; Bradley, P. A. In Comprehensive
Heterocyclic Chemistry II; Storr, R. C., Eds.; Elsevier: 1996, Vol. 4, pp
307-354.
Scheme 3. Proposed Mechanism
path a: in the absence of DMSO
S8
Ar'
Ar'
Ar'
NH
N
N
HN
+
Ar'
Ar
Br
Ar
NH
Ar
NH2
Ar
NH
NH2
-S-S5-S-S
A
B
C
2
For selected recent examples, see: (a) Davison, E. K.; Sperry, J. Org.
Chem. Front. 2016, 3, 38. (b) Volkova, T. V.; Terekhova, I. V.;
Silyukov, O. I.; Proshin, A. N.; Bauer-Brandl, A.; Perlovich, G. L.
MedChemComm 2017, 8, 162. (c) Hoveyda, H. R.; Fraser, G. L.;
Dutheuil, G.; El Bousmaqui, M.; Korac, J.; Lenoir, F.; Lapin, Al.; Noel,
S. ACS Med. Chem. Lett. 2015, 6, 736. (d) Gurjar, A. S; Andrisano, V.;
Simone, A. D; Velingkar, V. S. Bioorg. Chem. 2014, 57, 90. (e) Wang,
C.; Han, Y.; Wu, A.; Solyom, S.; Niu, L. ACS Chem. Neurosci. 2014, 5,
138. (f) Pham, C.-D.; Weber, H.; Hartmann, R.; Wray, V.; Lin, W.; Lai,
D.; Proksch, P. Org. Lett. 2013, 15, 2230. (g) Jorgensen, R.; Grimm, L.
L.; Sindhuwinata, N.; Peters, T.; Palcic, M. M. Angew. Chem. Int. Ed.
2012, 51, 4171.
Sn2- + 4 H+
Sn
Ar'
NH
Ar'
Ar'
HN
Ar'
N
-S7
N
HN
N
Ar
S
Ar
NH
NH
Ar
Ar
-S-S5-S-S
S-S5-S-
S
S
F
E
D
path b: in the presence of DMSO
NH
S8
DMSO
Ar'
NH
Ar'
NH2
N
Ar'
NH
O
Ar
N
Ar
Ar
Br
S-S-S5-S-
Ar
H
Kornblum oxidation
A'
Ar'
Ar'
N
N
NH
3
Ren, F.; Deng, G.; Wang, H.; Luan, L.; Meng, Q.; Xu, Q.; Xu, H.; Xu,
X.; Zhang, H.; Zhao, B. et al J. Med. Chem. 2012, 55, 4286. (b) Deng,
G.; Lin, X.; Ren, F.; Zhao, B. PCT Int. Appl. 2011, WO 2011134280.
(c) Deng, G.; Lin, X.; Meng, Q.; Ren, F.; Xiang, J.; Xu, H.; Zhao, B.;
Zhang, H. WO 2010148649.
Ar
Ar
NH
S
S-S-S5-S-
S-S5-S-
E
B'
In conclusion, we have developed a base-promoted three-
component reaction between arylmethyl bromides, arylamidine
hydrochlorides and sublimed elemental sulfur leading to
unsymmetric 3,5-diaryl-1,2,4-thiadiazoles in moderate to good
yields with diversity and complexity. This procedure features
with broad substrates scope as well as the employment of
elemental sulfur and commercially available starting materials
under transition-metal free conditions.
4
Yu, D. T.; Macina, O. T.; Sircar, I.; Sircar, J. C.; Riviello, C. M. US
6156776.
5
6
Mobashery, S.; O'Daniel, P. I.; Chang, M. US 9045442.
(a) Kihara, Y.; Kabashima, S.; Uno, K.; Okawara, T.; Yamasaki, T.;
Furukawa, M. Synthesis 1990, 1020. (b) Borovikova, G. S.; Levchenko,
E. S.; Borovik, E. I.; Darmokhval, E. A. Russ. J. Org. Chem. 1984, 20,
190. (c) Yonemoto, K.; Shibuya, I.; Tsuchiya, T.; Yasumoto, M.;
Taguchi, Y. Bull. Chem. Soc. Jpn. 1990, 63, 2933. (d) Goerdeler, J.;
Porrmann, H. Chem. Ber. 1962, 95, 627.
Acknowledgments
We thank the National Natural Science Foundation of China (nos.
21572025, 21372177, 21672028), “Innovation &
Entrepreneurship Talents” Introduction Plan of Jiangsu Province,
the Key University Science Research Project of Jiangsu Province
(15KJA150001), Jiangsu Key Laboratory of Advanced Catalytic
Materials &Technology (BM2012110) and Advanced Catalysis
and Green Manufacturing Collaborative Innovation Center for
financial supports. Sun thanks the National Natural Science
Foundation of China (no. 21602019) and Young Natural Science
Foundation of Jiangsu Province (BK20150263) for financial
support.
7
(a) Vanajatha, G.; Reddy, V. P. Tetrahedron Lett. 2016, 57, 2356. (b)
Zhao, J.-W.; Xu, J.-X.; Guo, X.-Z. Chin. Chem. Lett. 2014, 25, 1499. (c)
Zali-Boeini, H.; Shokrolahi, A.; Zali, A.; Ghani, K. J. Sul. Chem. 2012,
33, 165. (d) Mahajan, P. S.; Tanpure, S. D.; More, N. A.; Gajbhiye, J.
M.; Mhaske, S. B. RSC Adv. 2015, 5, 101641. (e) Yoshimura, A.;
Todora, A. D.; Kastern, B. J.; Koski, S. R.; Zhdankin, V. V. Eur. J. Org.
Chem. 2014, 5149. (f) Sun, Y.; Wu, W.; Jiang, H. Eur. J. Org. Chem.