materials,8 because of the unique properties of the SO2CF3
group.9 We recently expanded the anionic ortho-Fries
rearrangement to the synthesis of several types of hetero-
aryl triflones.10 In these anionic thia-Fries rearrangement
reactions, the carbanions are generated via directed ortho
metalation (DoM).11 It is highly desirable to develop new
variations of anionic thia-Fries rearrangement under mild
conditions. In continuation of our research on heterocyclic
aryl triflones,10,12 we were next interested in 2-hydroxyaryl-
3-indole triflones 2 since 2-hydroxyaryl-3-indole is an
important structural motif frequently encountered in bio-
logically active molecules.13 We herein report the regiose-
lective synthesis of 2 by the first remote anionic thia-Fries
rearrangement of 1 (Scheme 1b).14 It should be noted that
the anionic Fries rearrangement is induced by a carbanion
generated via directed remote metalation (DreM),15 while
our rearrangement does not require powerful alkyllithium
bases since it is induced by a nitranion.
Scheme 1. Anionic Thia-Fries Rearrangement
Table 1. Optimization of Reaction Conditions
2-(1H-Indol-2-yl)phenyl triflate 1a was initially chosen
as a test substrate for remote trifluoromethanesulfonyl
(8) (a) Wolff, J. J.; Gredel, F.; Oeser, T.; Irngartinger, H.; Pritzkow,
H. Chem.;Eur. J. 1999, 5, 29–38. (b) Matsui, M.; Suzuki, M.; Hayashi,
M.; Funabiki, K.; Ishigure, Y.; Doke, Y.; Shiozaki, H. Bull. Chem. Soc.
ꢀ
Jpn. 2003, 76, 607–612. (c) Porres, L.; Mongin, O.; Katan, C.; Charlot,
yield
(%)a
M.; Pons, T.; Mertz, J.; Blanchard-Desce, M. Org. Lett. 2004, 6, 47–50.
(d) Droumaguet, C. L.; Mongin, O.; Werts, M. H. V.; Blanchard-Desce,
M. Chem. Commun. 2005, 2802–2804. (e) Mongin, O.; Porres, L.;
Charlot, M.; Katan, C.; Blanchard-Desce, M. Chem.;Eur. J. 2007,
13, 1481–1498.
(9) (a) Sheppa, W. J. Am. Chem. Soc. 1963, 85, 1314–1318. (b)
Hendrickson, J. B.; Giga, A.; Wareing, J. J. Am. Chem. Soc. 1974, 96,
2275–2276. (c) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91,
165–195. (d) Goumount, R.; Kizilian, E.; Buncel, E.; Terrier, F. Org.
Biomol. Chem. 2003, 1, 1741–1748. (e) Terrier, F.; Magnier, E.; Kizilian,
E.; Wakselman, C.; Buncel, E. J. Am. Chem. Soc. 2005, 127, 5563–5571.
(f) Guesmi, N. E.; Boubaker, T.; Goumont, R.; Terrier, F. Org. Biomol.
Chem. 2008, 6, 4041–4052.
entry
base
LDA
solvent temperature
time
2 h
ꢀ
1
THF
THF
THF
THF
DMF
DMF
DMF
DMF
DMF
THF
DMSO
DMF
À78 °C to rt
À78 °C to rt
À78 °C to rt
0 °C to rt
0 °C to rt
0 °C to rt
0 °C to rt
0 °C to rt
0 °C to rt
0 °C to rt
0 °C to rt
0 °C to rt
29
23
75
2
n-BuLi
NaHMDS
DBU
2 h
2 h
3
4
overnight trace
overnight 50
5
K2CO3
t-BuOK
NaOMe
NaH
6
2 h
78
7
overnight 18
8
2 h
2 h
4 h
2 h
2 h
87
58
22
81
80
9
LiH
(10) Xu, X.-H.; Wang, X.; Liu, G.-K.; Tokunaga, E.; Shibata, N.
Org. Lett. 2012, 14, 2544–2547.
10
11
12b
NaH
NaH
(11) For a review, see: Snieckus, V. Chem. Rev. 1990, 90, 879–933.
(12) (a) Xu, X.-H.; Liu, G.-K.; Azuma, A.; Tokunaga, E.; Shibata, N.
Org. Lett. 2011, 13, 4854–4857. (b) Kawai, H.; Sugita, Y.; Tokunaga, E.;
Shibata, N. Eur. J. Org. Chem. 2012, 1295–1298. (c) Kawai, H.; Yuan,
Z.; Tokunaga, E.; Shibata, N. Org. Lett. 2012, 14, 5330–5333.
(13) For selected examples, see: (a) Verner, E.; Katz, B. A.; Spencer,
J. R.; Allen, D.; Hataye, J.; Hruzewicz, W.; Hui, H. C.; Kolesnikov, A.;
Li, Y.; Luong, C.; Martelli, A.; Radika, K.; Rai, R.; She, M.; Shrader,
W.; Sprengeler, P. A.; Trapp, S.; Wang, J.; Young, W. B.; Mackman,
R. L. J. Med. Chem. 2001, 44, 2753–2771. (b) Mackman, R. L.; Katz,
B. A.; Breitenbucher, J. G.; Hui, H. C.; Verner, E.; Luong, C.; Liu, L.;
Sprengeler, P. A. J. Med. Chem. 2001, 44, 3856–3871. (c) Narjes, F.;
Crescenzi, B.; Ferrara, M.; Habermann, J.; Colarusso, S.; Ferreira,
M. R. R.; Stansfield, I.; Mackay, A. C.; Conte, I.; Ercolani, C.;
Zaramella, S.; Palumbi, M.-C.; Meuleman, P.; Leroux-Roels, G.;
Giuliano, C.; Fiore, F.; Marco, S. D.; Baiocco, P.; Koch, U.; Migliaccio,
G.; Altamura, S.; Laufer, R.; Francesco, R. D.; Rowley, M. J. Med.
Chem. 2011, 54, 289–301.
NaH
a Yield was determined by 19F NMR using trifluoromethoxybenzene
as an internal standard. b NaH (1.0 equiv) was added.
(triflyl) rearrangement (Table 1). When 1a was treated with
LDA, the most commonly used base for remote anionic
Fries rearrangement, the reaction was complex and the
desired compound 2a was obtained in 29% yield (Table 1,
entry 1). The low yield was probably caused by the lower
stability and better leaving ability of OSO2CF3 compared to
other directed metalation groups (DMGs). Different bases
were then screened, and NaH was proven to be the best base
giving the desired compound in 87% yield (Table 1, entries
2À9). The solvent had a significant effect on yield. Only a
22% yield was obtained when the reaction was carried out in
THF, while an 81% yield was achieved in DMSO (Table 1,
entries 10 and 11). Decreasing the amount of base from 2.0
to 1.0 equiv caused a slight drop in yield (Table 1, entry 12).
It is noteworthy that only the C(3)-Tf product was detected
from crude 19F NMR, while no N(1)-Tf product was found.
The C(3)/N(1) chemo- or regioselectivity in this intra-
molecular rearrangement reaction is opposite to that in
general sulfonylation reactions of indoles.16
(14) The present method is a nice complement to our recently
developed modified FriedelÀCrafts trifluoromethanesulfonylation
method12a for preparing 3-triflylindoles.
(15) (a) Wang, X.; Snieckus, V. Tetrahedron Lett. 1991, 32, 4879–
4882. (b) Wang, W.; Snieckus, V. J. Org. Chem. 1992, 57, 424–426. (c)
Beaulieu, F.; Snieckus, V. J. Org. Chem. 1994, 59, 6508–6509. (d) Gray,
M.; Chapell, B. J.; Taylor, N. J.; Snieckus, V. Angew. Chem., Int. Ed.
Engl. 1996, 35, 1558–1560. (e) Chauder, B. A.; Kalinin, A. V.; Taylor,
N. J.; Snieckus, V. Angew. Chem., Int. Ed. 1999, 38, 1435–1438. (f) Reed,
M. A.; Chang, M. T.; Snieckus, V. Org. Lett. 2004, 6, 2297–2300. (g)
Macklin, T. K.; Reed, M. A.; Snieckus, V. Eur. J. Org. Chem. 2008,
1507–1509. (h) James, C. A.; Snieckus, V. J. Org. Chem. 2009, 74, 4080–
4093. (i) James, C. A.; Coelho, A. L.; Gevaert, M.; Forgione, P.;
Snieckus, V. J. Org. Chem. 2009, 74, 4094–4103. (j) Miller, R. E.;
Sommer, R.; Fan, H.; Snieckus, V.; Groth, U. Heterocycles 2012, 86,
1045–1054.
Org. Lett., Vol. 15, No. 3, 2013
687