C O M M U N I C A T I O N S
Acknowledgment. We thank Mr. T. Kondo of Tohoku Uni-
versity for the NOE measurement and Dr. M. Ichinohe and Prof.
A. Sekiguchi of the University of Tsukuba for the X-ray analysis.
We are also grateful to the Ministry of Education, Culture, Sports,
Science, and Technology of Japan for financial support.
Figure 1. ORTEP drawing of 8A.
Scheme 1
Supporting Information Available: Experimental details, spec-
troscopic and analytical data for 1-11, dependence of de on concentra-
tion of alcohol, Arrhenius plots of the diastereomers of 2b and 4b, 1H
NMR NOE difference spectra of 6, 1H-13C COSY spectra of 6, crystal
packing of 8A (PDF), and crystallographic file of 8A (CIF). This
References
(1) For a recent review of silylenes, see: Gaspar, P. P.; West, R. In The
Chemistry of Organic Silicon Compounds, 2nd ed.; Rappoport, Z., Apeloig,
Y., Eds.; John Wiley & Sons: New York, 1999; Part 3, pp 2463-2568.
(2) Preliminary study of the stereochemistry of alcohol addition to silylenes,
see: (a) Ando, W.; Fujita, M.; Yoshida, H.; Sekiguchi, A. J. Am. Chem.
Soc. 1988, 110, 3310. (b) Zhang, S.; Wagenseller, P. E.; Conlin, R. T. J.
Am. Chem. Soc. 1991, 113, 4278. (c) Gaspar, P. P.; Beatty, A. M.; Chen,
T.; Haile, T.; Braddock, J.-W.; Rath, N. P.; Klooster, W. T.; Koetzle, T.
F.; Mason, S. A.; Albinati, A. Organometallics 1999, 18, 3921. (d)
Tortorelli, V. J.; Jones, M., Jr. J. Am. Chem. Soc. 1980, 102, 1425. (e)
Seyferth, D.; Annarelli, D. C.; Duncan, D. P. Organometallics 1982, 1,
1288. (f) Tortorelli, V. J.; Jones, M., Jr.; Wu, S.-H.; Li, Z.-H. Organo-
metallics 1983, 2, 759. (g) Ishikawa, M.; Nakazawa, K.-I.; Kumada, M.
J. Organomet. Chem. 1979, 178, 105. (h) Pae, D. H.; Xiao, M.; Chiang,
M. Y.; Gaspar, P. P. J. Am. Chem. Soc. 1991, 113, 1281.
The diastereoselectivities could be rationalized by reference to
the mechanism shown in Scheme 1. The selective addition of
alcohol to the silylene takes place from the less hindered face.
(3) Diastereoselective silacyclopropanations of chiral alkenes, see: (a) Cira-
kovic, J.; Driver, T. G.; Woerpel, K. A. J. Am. Chem. Soc. 2002, 124,
9370-9371. (b) Driver, T. G.; Franz, A. K.; Woerpel, K. A. J. Am. Chem.
Soc. 2002, 124, 6524-6525.
(4) (a) Gaspar, P. P. In ReactiVe Intermediates; Jones, M., Jr., Moss, R. A.,
Eds.; Wiley: New York, 1978; Vol. 1, pp 229-277. (b) Gaspar, P. P. In
ReactiVe Intermediates; Jones, M., Jr., Moss, R. A., Eds.; Wiley: New
York, 1981; Vol. 2, pp 335-385.
Next, the diastereoselective addition of alcohol to a silylene with
an ethereal substituent was examined, where the oxygen atom can
coordinate intermolecularly to the silylene. The photoreaction of 9
with t-BuOH at -60 °C proceeded smoothly to give a mixture of
trapping products (eq 4). Interestingly, a slight predominance of
10B over 10A was observed; the ratio of A:B was 1:1.22. However,
the photoreaction of 11 with t-BuOH at -60 °C gave a 2.33:1
mixture of A and B isomers, which could be interpreted in the same
way as that described above. Most probably, the antistereoselectivity
in the reaction of 9 results when the oxygen atom on the ether
group coordinates to the silylene from the less hindered face, after
which the addition of alcohol to the silylene takes place.
Thus, we have demonstrated the clear example of diastereo-
selectivity in the reaction of group 14 divalent reactive intermedi-
ates. Details of the mechanism will be reported in due course.
Further work is in progress.
(5) See the Supporting Information for experimental details and spectral and
analytical data of the new compounds.
(6) Nomenclature of the relative configurations: (a) Masamune, S.; Kaiho,
T.; Garver, D. S. J. Am. Chem. Soc. 1982, 104, 5521. (b) Masamune, S.;
Ali, S. A.; Snitman, L.; Garvey, D. S. Angew. Chem., Int. Ed. Engl. 1980,
19, 557. (c) Prelog, V.; Helmchen, G. Angew. Chem., Int. Ed. Engl. 1982,
21, 567. (d) Seebach, D.; Prelog, V. Angew. Chem., Int. Ed. Engl. 1982,
21, 654.
(7) For experimental details, see the Supporting Information.
(8) The inversion process of the anionic silicon after the attack of alcohols
may be impossible, because the barrier to inversion of the silyl anions is
normally high, see: Lambert, J. B.; Urdaneta-Pe´rez, M. J. Am. Chem.
Soc. 1978, 100, 157.
(9) Crystal data for the major isomer at 120 K: MF ) C28H28OSi, MW )
408.59, monoclinic, P21/n, a ) 9.4120(6) Å, b ) 19.5450(12) Å, c )
12.8760(7) Å, â ) 105.840(4)°, V ) 2278.7(2) Å3, Z ) 4, Dcald ) 1.191
g/cm3. The final R factor was 0.0600 for 5455 reflections with I0 > 2σ(I0)
(Rw ) 0.0845 for all data).
(10) The stereochemistry of the major isomer of 2 and 4 is 1R2S/1S2R, because
the Me and i-Pr groups on the silylene have sterically lower priority than
the phenylethyl group.
JA028754W
9
J. AM. CHEM. SOC. VOL. 125, NO. 11, 2003 3217