10.1002/adsc.201801694
Advanced Synthesis & Catalysis
P(O)−NH Compounds and Determination of
[4] a) D. P. Albone, S. Challenger, A. M. Derrick, S. M.
Fillery, J. L. Irwin, C. M. Parsons, H. Takada, P. C.
Taylor, D. J. Wilson, Org. Biomol. Chem. 2005, 3,
107−111; b) M. R. Fructos, S. Trofimenko, M. M.
Díaz-Requejo, P. J. Perez, J. Am. Chem. Soc. 2006, 128,
11784−11791; c) R. Bhuyan, K. M. Nicholas, Org. Lett.
2007, 9, 3957−3959.
Accelerating Effect.
An oven-dried 25 mL Schlenk tube was charged with
phosphorus-containing amide (0.3 mmol), Cu(OAc)2 (2.7
mg, 5 mol%), DTBP (114 µL, 2 equiv) and hydrocarbons
(1 mL) under nitrogen atmosphere with stirring at 100 °C
for 36 h. The mixture was then cooled to room temperature,
diluted with CH2Cl2 (2 mL), and filtered through a celite
pad. The yield of product was determined by 31P NMR
spectra of the filtrate, using triphenylphosphine oxide (83.4
mg, 0.3 mmol) as internal standard. After the concentration
of the filtrate in vacuo, the residues were purified by silica
gel flash chromatography column to give the
corresponding product. The generality of accelerating
effect by acetic acid coproduct was further verified by
examining the 31P NMR yield of the corresponding product
obtained within 23 h, and that with the addition of acetic
acid (10 mol%), separately.
[5] a) J. D. Harden, J. V. Ruppel, G.-Y. Gao, X. P. Zhang,
Chem. Commun. 2007, 4644−4646.
[6] a) H. Lebel, K. Huard, S. Lectard, J. Am. Chem. Soc.
2005, 127, 14198–14199; b) K. Huard, H. Lebel,
Chem.-Eur. J. 2008, 14, 6222–6230.
[7] a) H. Kwart, A. A. Khan, J. Am. Chem. Soc. 1967, 89,
1951−1953; b) Y. M. Badiei, A. Krishnaswamy, M. M.
Melzer, T. H. Warren, J. Am. Chem. Soc. 2006, 128,
15056−15057; c) Y. M. Badiei, A. Dinescu, X. Dai, R.
M. Palomino, F. W. Heinemann, T. R. Cundari, T. H.
Warren, Angew. Chem. 2008, 120, 10109−10112;
Angew. Chem. Int. Ed. 2008, 47, 9961−9964.
Acknowledgements
The authors thank the National Natural Science Foundation of
China (Nos. 21571060, 21676076, 21725602) for financial
support. R. Qiu thanks Prof. Nobuaki Kambe, Prof. Takanori
Iwasaki (Osaka University) and Prof. Yuanzhi Xia (Wenzhou
University) for helpful discussion. C.T. Au thanks Hunan
University for an adjunct professorship.
[8] a) S. A. Reed, M. C. White, J. Am. Chem. Soc. 2008,
130, 3316−3318; b) G. Liu, G. Yin, L. Wu, Angew.
Chem. 2008, 120, 4811−4814; Angew. Chem. Int. Ed.
2008, 47, 4733−4736.
References
[9] a) Y.-H. Ye, J. Zhang, G. Wang, S.-Y. Chen, X.-Q. Yu,
Tetrahedron 2011, 67, 4649−4654; b) Y. Cheng, W.
Dong, L. Wang, K. Parthasarathy, C. Bolm, Org. Lett.
2014, 16, 2000−2002; c) L. Zhou, S. Tang, X. Qi, C.
Lin, K. Liu, C. Liu, A. Lei, Org. Lett. 2014, 16,
3404−3407; d) Z. L. Li, C. Cai, ChemistrySelect 2017.
2, 8076−8079; e) J. Xiao, P. Li, Y. Zhang, D. Xie, Z.
Peng, D. An, W. Dong, Tetrahedron 2018, 74,
4558−4568; f) H. Yi, G. Zhang, H. Wang, Z. Huang, J.
Wang, A. K. Singh, A. Lei, Chem. Rev. 2017, 117,
9016−9085 and references cited therein.
[1] a) S. H. Cho, J. Y. Kim, J. Kwak, S. Chang, Chem. Soc.
Rev. 2011, 40, 5068−5083; b) M. L. Louillat, F. W.
Patureau, Chem. Soc. Rev., 2014, 43, 901−910; c) J.
Jiao, K. Murakami, K. Itami, ACS Catal. 2015, 6,
610−633; d) H. Kim, S. Chang, ACS Catal. 2016, 6,
2341−2351; e) T. Xiong, Q. Zhang, Chem. Soc. Rev.
2016, 45, 3069−3087 and references cited therein.
[2]a) M. Johannsen, K. A. Jørgensen, Chem. Rev. 1998, 98,
1689−1708; b) F. Collet, R. H. Dodd, P. Dauban, Chem.
Commun. 2009, 5061−5074; c) T. A. Ramirez, B. Zhao,
Y. Shi, Chem. Soc. Rev. 2012, 41, 931−942; d) J. L.
Roizen, M. E. Harvey, J. Du Bois, Acc. Chem. Res.
2012, 45, 911−922; e) R. T. Gephart, T. H. Warren,
Organometallics 2012, 31, 7728−7752; f) Y. Park, Y.
Kim, S. Chang, Chem. Rev. 2017, 117, 9247−9301; g)
D. Hazelard, P. A. Nocquet, P. Compain, Org. Chem.
Front. 2017, 4, 2500−2521; h) Y. N. Timsina, B. F.
Gupton, K. C. Ellis, ACS Catal. 2018, 8, 5732−5776
and references cited therein.
[10] Y. Kohmura, K. i. Kawasaki, T. Katsuki, Synlett 1997,
12, 1456−1458.
[11] a) G. Pelletier, D. A. Powell, Org. Lett. 2006, 8,
6031−6034; b) Y. Zhang, H. Fu, Y. Jiang, Y. Zhao,
Org. Lett. 2007, 9, 3813−3816; c) D. A. Powell, H. Fan,
J. Org. Chem. 2010, 75, 2726−2729; d) S. Wiese, Y. M.
Badiei, R. T. Gephart, S. Mossin, M. S. Varonka, M. M.
Melzer, M. Karsten, R. C. Thomas, T. H. Warren,
Angew. Chem. 2010, 122, 9034−9039; Angew. Chem.
Int. Ed. 2010, 49, 8850−8855; e) R. T. Gephart, D.-L.
Huang, M. J. B. Aguila, G. Schmidt, A. Shahu, T. H.
Warren, Angew. Chem. 2012, 124, 6594−6598; Angew.
Chem. Int. Ed. 2012, 51, 6488−6492; f) E. S. Jang, C.
L. McMullin, M. Kꢀß, K. Meyer, T. R. Cundari, T. H.
Warren, J. Am. Chem. Soc., 2014, 136, 10930−10940;
g) B. L. Tran, B. Li, M. Driess, J. F. Hartwig, J. Am.
Chem. Soc. 2014, 136, 2555−2563; h) H.-T. Zeng, J. M.
Huang, Org. Lett. 2015, 17, 4276−4279; i) L. Zhou, H.
Yi, L. Zhu, Qi, X., H. Jiang, C. Liu, Y. Feng, Y. Lan A.
Lei, Sci. Rep. 2015, 5, 15934; j) J. Xiao, Q. Su, W.
Dong, Z. Peng, Y. Zhang, D. An, J. Org. Chem. 2017,
82, 9497−9504.
[3] a) X.-Q. Yu, J.-S. Huang, X.-G. Zhou, C.-M. Che, Org.
Lett. 2000, 2, 2233−223; b) J.-L. Liang, S.-X. Yuan, J.-
S. Huang, W.-Y. Yu, C.-M. Che, Angew. Chem. 2002,
41, 3465−3468; Angew. Chem. Int. Ed. 2002, 41,
3465−3468; c) S. K.-Y. Leung, W.-M. Tsui, J.-S.
Huang, C.-M. Che, J.-L. Liang, N. Zhu, J. Am. Chem.
Soc. 2005, 127, 16629−16640; d) K. W. Fiori, J. Du
Bois, J. Am. Chem. Soc. 2007, 129, 562−568; e) C.
Liang, F. Collet, F. Robert-Peillard, P. Muller, R. H.
Dodd, P. Dauban, J. Am. Chem. Soc. 2008, 130,
343−350; f) E. Milczek, N. Boudet, S. Blakey, Angew.
Chem. 2008, 120, 6931−6934; Angew. Chem. Int. Ed.
2008, 47, 6825−6828; g) M. E. Harvey, D. G. Musaev,
J. Du Bois, J. Am. Chem. Soc. 2011, 133, 17207−17216.
[12] For recent reviews, see: a) G. Rouquet, N. Chatani,
Angew. Chem. 2013, 126, 3564−3567; Angew. Chem.
7
This article is protected by copyright. All rights reserved.