Page 5 of 6
Journal of the American Chemical Society
Electronic Structure and Nitrene Transfer Reactivity. J. Am. Chem.
Soc. 2016, 138, 2327.
A. R.; McIntosh, J. A.; Arnold, F. H., Enzyme-Controlled
Nitrogen-Atom Transfer Enables Regiodivergent C–H Amination.
J. Am. Chem. Soc. 2014, 136, 15505. (c) Prier, C. K.; Zhang, R. K.;
Buller, A. R.; Brinkmann-Chen, S.; Arnold, F. H.,
Enantioselective, intermolecular benzylic C–H amination
catalysed by an engineered iron-haem enzyme. Nat. Chem. 2017,
9, 629.
1
2
3
4
5
6
7
8
(4) Reddy, R. P.; Davies, H. M. L., Dirhodium Tetracarboxylates
Derived from Adamantylglycine as Chiral Catalysts for
Enantioselective C−H Aminations. Org. Lett. 2006, 8, 5013.
(5) (a) Lebel, H.; Spitz, C.; Leogane, O.; Trudel, C.; Parmentier, M.,
Stereoselective Rhodium-Catalyzed Amination of Alkenes. Org.
Lett. 2011, 13, 5460. (b) Lebel, H.; Trudel, C.; Spitz, C.,
Stereoselective intermolecular C–H amination reactions. Chem.
Commun. 2012, 48, 7799. (c) Lebel, H.; Mamani Laparra, L.;
Khalifa, M.; Trudel, C.; Audubert, C.; Szponarski, M.; Dicaire
Leduc, C.; Azek, E.; Ernzerhof, M., Synthesis of oxazolidinones:
rhodium-catalyzed C–H amination of N-mesyloxycarbamates.
Org. Biomol. Chem. 2017, 15, 4144. (d) Azek, E.; Khalifa, M.;
Bartholoméüs, J.; Ernzerhof, M.; Lebel, H., Rhodium(II)-catalyzed
C–H aminations using N-mesyloxycarbamates: reaction pathway
and by-product formation. Chem. Sci. 2019, 10, 718.
(10) (a) Scriven, E. F. V.; Turnbull, K., Azides: their preparation and
synthetic uses. Chem. Rev. 1988, 88, 297. (b) Bräse, S.; Gil, C.;
Knepper, K.; Zimmermann, V., Organic Azides: An Exploding
Diversity of a Unique Class of Compounds. Angew. Chem. Int. Ed.
2005, 44, 5188. (c) Lebel, H.; Leogane, O., Boc-Protected Amines
via a Mild and Efficient One-Pot Curtius Rearrangement. Org. Lett.
2005, 7, 4107. (d) Li, D.; Wu, T.; Liang, K.; Xia, C., Curtius-like
Rearrangement of an Iron–Nitrenoid Complex and Application in
Biomimetic Synthesis of Bisindolylmethanes. Org. Lett. 2016, 18,
2228.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6) (a) Zhou, X.-G.; Yu, X.-Q.; Huang, J.-S.; Che, C.-M., Asymmetric
amidation of saturated C–H bonds catalysed by chiral ruthenium
and manganese porphyrins. Chem. Commun. 1999, 2377. (b)
Liang, J.-L.; Yuan, S.-X.; Huang, J.-S.; Yu, W.-Y.; Che, C.-M.,
Highly Diastereo- and Enantioselective Intramolecular Amidation
of Saturated C–H Bonds Catalyzed by Ruthenium Porphyrins.
Angew. Chem. Int. Ed. 2002, 41, 3465. (c) Liang, J.-L.; Yuan, S.-
X.; Huang, J.-S.; Che, C.-M., Intramolecular C−N Bond Formation
Reactions Catalyzed by Ruthenium Porphyrins:ꢀ Amidation of
Sulfamate Esters and Aziridination of Unsaturated Sulfonamides.
J. Org. Chem. 2004, 69, 3610.
(7) (a) Milczek, E.; Boudet, N.; Blakey, S., Enantioselective C–H
Amination Using Cationic Ruthenium(II)–pybox Catalysts.
Angew. Chem. Int. Ed. 2008, 47, 6825. (b) Musaev, D. G.; Blakey,
S. B., Insight into Mechanistic Features of Ruthenium(II)–Pybox-
Catalyzed C–H Amination. Organometallics 2012, 31, 4950.
(8) (a) Ichinose, M.; Suematsu, H.; Yasutomi, Y.; Nishioka, Y.;
Uchida, T.; Katsuki, T., Enantioselective Intramolecular Benzylic
C–H Bond Amination: Efficient Synthesis of Optically Active
Benzosultams. Angew. Chem. Int. Ed. 2011, 50, 9884. (b)
Nishioka, Y.; Uchida, T.; Katsuki, T., Enantio- and Regioselective
Intermolecular Benzylic and Allylic C–H Bond Amination. Angew.
Chem. Int. Ed. 2013, 52, 1739. (c) Uchida, T.; Katsuki, T.,
Asymmetric Nitrene Transfer Reactions: Sulfimidation,
Aziridination and C–H Amination Using Azide Compounds as
Nitrene Precursors. Chem. Rec. 2014, 14, 117.
(11) Hong, S. Y.; Park, Y.; Hwang, Y.; Kim, Y. B.; Baik, M.-H.; Chang,
S., Selective formation of γ-lactams via C–H amidation enabled by
tailored iridium catalysts. Science 2018, 359, 1016.
(12) (a) Chan, W.-W.; Yeung, S.-H.; Zhou, Z.; Chan, A. S. C.; Yu, W.-
Y., Ruthenium Catalyzed Directing Group-Free C2-Selective
Carbenoid Functionalization of Indoles by α-Aryldiazoesters. Org.
Lett. 2010, 12, 604. (b) Chan, W.-W.; Kwong, T.-L.; Yu, W.-Y.,
Ruthenium-catalyzed intramolecular cyclization of diazo-β-
ketoanilides for the synthesis of 3-alkylideneoxindoles. Org.
Biomol. Chem. 2012, 10, 3749.
(13) (a) Xue, Z.-Y.; Liu, L.-X.; Jiang, Y.; Yuan, W.-C.; Zhang, X.-M.,
Highly
Enantioselective
Lewis
Base
Organocatalyzed
Hydrosilylation of γ-Imino Esters. Eur. J. Org. Chem. 2012, 2012,
251. (b) Bregman, H.; Chakka, N.; Guzman-Perez, A.; Gunaydin,
H.; Gu, Y.; Huang, X.; Berry, V.; Liu, J.; Teffera, Y.; Huang, L.;
Egge, B.; Mullady, E. L.; Schneider, S.; Andrews, P. S.; Mishra,
A.; Newcomb, J.; Serafino, R.; Strathdee, C. A.; Turci, S. M.;
Wilson, C.; DiMauro, E. F., Discovery of Novel, Induced-Pocket
Binding Oxazolidinones as Potent, Selective, and Orally
Bioavailable Tankyrase Inhibitors. J. Med. Chem. 2013, 56, 4320.
(14) Wang, Z.; Yin, H.; Fu, G. C., Catalytic enantioconvergent coupling
of secondary and tertiary electrophiles with olefins. Nature 2018,
563, 379.
(15) Enna, S. J.; Snyder, S. H., Properties of γ-aminobutyric acid
(GABA) receptor binding in rat brain synaptic membrane fractions.
Brain Res. 1975, 100, 81.
(16) Fiori, K. W.; Espino, C. G.; Brodsky, B. H.; Du Bois, J., A
mechanistic analysis of the Rh-catalyzed intramolecular C–H
amination reaction. Tetrahedron 2009, 65, 3042.
(9) (a) McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.;
Lewis, J. C.; Brown, T. R.; Arnold, F. H., Enantioselective
Intramolecular C–H Amination Catalyzed by Engineered
Cytochrome P450 Enzymes In Vitro and In Vivo. Angew. Chem.
Int. Ed. 2013, 52, 9309. (b) Hyster, T. K.; Farwell, C. C.; Buller,
ACS Paragon Plus Environment