2 (a) Fenlon, E. E.; Murray, T. J.; Baloga, M. H.; Zimmerman, S. C. J. Org. Chem. 1993, 58, 6625–6628; (b) Lim, J.-L.;
Chirayil, S.; Thummel, R. P. J. Org. Chem. 1991, 56, 1492–1500; (c) Thummel, R. P. Synlett 1992, 1–12.
3 Fernández-Mato, A.; Quintela, J. M.; Peinador, C. New J. Chem. 2012, 36, 1634–1640.
4 For a recent general review on the Friedländer synthesis, see: Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; do
Carmo Carreiras, M.; Soriano, E. Chem. Rev. 2009, 109, 2652–2671.
5 (a) Friedländer, P. Ber. 1882, 15, 2572–2575; (b) Muchowski, J. M.; Maddox, M. L. Can. J. Chem. 2004, 82, 461–478; (c)
Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. Chem. Commun. 2001, 2576–2577; (d) Wu, J.; Xia, H.-G.; Gao, K. Org. Biomol.
Chem. 2006, 4, 126–129; (e) De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 1647 –1649; (f) Riesgo, E. C.; Jin, X.;
Thummel, R. P. J. Org. Chem. 1996, 61, 3017–3022.
6 (a) Hawes, E. M.; Wibberley, D. G. J. Chem. Soc. C 1966, 315–321; (b) Piao, M.-Z.; Imafuku, K. J. Heterocycl. Chem.
1996, 33, 389–398; (c) Reddy, K. V.; Mogilaiah, K.; Sreenivasulu, B. J. Indian Chem. Soc. 1986, 63, 443–445; (d)
Mogilaiah, K.; Uma Rani, J. Indian J. Chem., Sect B 2006, 45, 1051–1053; (e) Rao, G. R.; Mogilaiah, K.; Reddy, K. R.;
Sreenivasulu, B. Indian J. Chem., Sect B 1988, 27, 200–202; (f) Fernández-Mato, A.; Blanco, G.; Quintela, J. M.; Peinador,
C. Tetrahedron 2008, 64, 3446–3456.
7 Patil, N. T.; Raut, V. S. J. Org. Chem. 2010, 75, 6961–6964.
8 For other related processes involving reactions of 2-aminobenzaldehydes or 2-acylanilines with alkynes for the
synthesis of quinolines, see: (a) Li, H.; Wang, C.; Huang, H.; Xu, X.; Li, Y. Tetrahedron Lett. 2011, 52, 1108-1111; (b) Zhou,
W.; Lei, J. Chem. Commun. 2014, 50, 5583-5585.
9 We have no precise explanation for this result. Probably, the pretreatment of Cu salt with 2a and 6a in the absence of
amine 7b leads to the generation of more reactive catalytic species.
10 Representative procedure exemplified by the synthesis of 3-phenyl-1,8-naphthyridine (9a). 2-Aminonicotinaldehyde
2a (61 mg, 0.5 mmol) and copper (II) triflate (9 mg, 0.025 mmol) were placed in a screw cap vial followed by addition of
acetonitrile (0.5 ml) and phenyl acetylene 6a (77 mg, 0.75 mmol). The resulting mixture was flushed with argon,
submerged in the oil bath preheated at 110 °C and kept with a stirring for 1 hour. Upon completion of this time, the
mixture was cooled down and the diethylamine 7b (44 mg, 0.6 mmol) was added. The reaction mixture was again
flushed with argon, submerged in the oil bath preheated at 110 °C and kept with a stirring for another 12 hours. The
resulting mixture was diluted with EtOAc and evaporated with silica gel. Column chromatography with PE-EtOAc
(40ꢀ50 %) followed by washing with diethyl ether delivered pure 9a (57 mg, 55 %). 1H NMR (400 MHz, CDCl3): δ 9.38
(bs, 1H), 9.10 (bs, 1H), 8.29 (d, J = 2.3 Hz, 1H), 8.23 (dd, J = 8.1, 1.4 Hz, 1H), 7.76–7.64 (m, 2H), 7.58-7.47 (m, 3H), 7.47-
7.38 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 155.5, 153.4, 153.2, 137.3, 137.0, 135.0, 134.0, 129.4, 128.6, 127.5, 122.6;
HRMS (ESI, [M+H]+) for C14H10N2 calcd. 207.0917, found 207.0918.
11 In the paper of Patil and Raut (ref.7) a different mechanism for the analogous reaction of 2-aminobenzaldehydes 1
was proposed. According to them, 1 reacts with secondary amine to form the iminium cation that subsequently
undergoes the attack of copper acetylide. The resulting propargylamine intermediate undergoes 6-endo-dig cyclization
and aromatization to give 2-substituted quinoline 8. However, for the reactions with 2-aminonicotinaldehydes 2 this
mechanism seems to be not operational as can be judged from the different regioselectivity of our process.
12 For a recent general review on transition metal-catalyzed hydroamination and hydroamidation, see: Huang, L.; Arndt,
M.; Gooßen, K.; Heydt, H.; Gooßen, L. J. Chem. Rev. 2015, 115, 2596–2697.
13 (a) Rose, J. D.; Gale, R. A. J. Chem. Soc. 1949, 792–796; (b) Gardner, C.; Kerrigan, V.; Rose, J. D. Weedon, B. C. L. J.
Chem. Soc. 1949, 780–782; (c) Reppe, W. Justus Liebigs Ann. Chem. 1955, 596, 12–25; (d) Zhou, L.; Bohle, D. S.; Jiang, H.