selection of reactions of a bulky cyclopropylidenephospha-
ethene stabilized by the Mes* group, as exemplified by the
construction of the cyclopropyl moiety. Moreover, the
preparation of a cyclobutylidenephosphaethene is also de-
scribed.
Scheme 1a
The sterically encumbered 2,2-dibromo-1-phosphaethene
(1)8 bearing the Mes* group was allowed to react with
butyllithium3a,9 and then with 1,3-dibromopropane to afford
(Z)-2,5-dibromo-1-phosphapent-1-ene Z-2 in excellent yield
(>90%).10 Phosphapentene Z-2 was treated with potassium
tert-butoxide to afford a novel cyclopropylidenephospha-
ethene derivative 3, which was first characterized by
spectroscopic methods.11 In the 31P NMR spectrum, the signal
of 3 was observed at a lower field than that reported for
3-methyl-1-(2,4,6-tri-tert-butylphenyl)-1-phosphabuta-1,2-
diene (Mes*PdCdCMe2; δP 60), whereas in the 13C NMR
spectrum the signals due to the two sp2 carbon atoms of 3
appeared at a higher field than those reported for Mes*Pd
CdCMe2 (δP)C 235.0; δC)C 117.0).12 The UV spectrum of
3 displayed a bathochromic shift compared with that of
1-(2,4,6-tri-tert-butylphenyl)-1-phosphaallene [λmax 275 nm
(sh, log ꢀ 3.18)],13 probably due to a hyperconjugation effect
enhanced by the cyclopropyl group.6,14 On the other hand,
the (Z)-5-bromo-1-phosphapent-1-ene Z-5, prepared from
2-bromo-1-phosphaethene 4,8a was allowed to react with
potassium tert-butoxide to afford the (Z)-2-cyclopropyl-1-
phosphaethene Z-6.10 The formation of Z-6 under these
a Reagents and conditions: (a) (i) n-BuLi, THF, -78 °C; (ii)
1,3-dibromopropane, -78 °C to room temperature. (b) t-BuOK,
THF, 0 °C.
conditions indicated that, in the reaction of Z-2 with
potassium tert-butoxide, the cyclopropyl ring was first
formed by γ-elimination before the 1-phosphaallene skeleton
was constructed. No â-elimination took place to afford either
1-phosphapenta-1,2,4-triene or 1-phosphapenta-1,4-diene
derivative from Z-2 or Z-5 with potassium tert-butoxide,
probably indicating that the acidity of the protons at the
3-position is sufficiently high to generate the requisite
anion.15
Next, the cyclopropylidenephosphaethene 3 was allowed
to react with W(CO)5(thf) to afford the corresponding
complex 7 in 70% yield (Scheme 2).16 The structure of 7
(7) (a) Nakamura, I.; Yamamoto, Y. AdV. Synth. Catal. 2002, 344, 111.
(b) Nakamura, E.; Yamago, S. Acc. Chem. Res. 2002, 35, 867.
(8) (a) Appel, R.; Casser, C.; Immenkeppel, M. Tetrahedron Lett. 1985,
26, 3551. (b) Goede, S. J.; Bickelhaupt, F. Chem. Ber. 1991, 124, 2677.
(c) Goede, S. J.; Dam, M. A.; Bickelhaupt, F. Recl. TraV. Chim. Pays-Bas
1994, 113, 278.
Scheme 2a
(9) Yoshifuji, M.; Ito, S. Top. Curr. Chem. 2003, 223, 67.
(10) Z-2: Colorless crystals, mp 108-109 °C dec; 31P{1H} NMR (162
MHz, CDCl3) δ 250; 1H NMR (400 MHz, CDCl3) δ 3.50 (t, 2H, 3JHH ) 7
3
3
Hz, CH2Br), 3.05 (dt, 2H, JPH ) 21 Hz, JHH ) 7 Hz, PdCCH2), 2.24
(quin, 2H, JHH ) 7 Hz, CH2). Z-5: 31P{1H} NMR (162 MHz, CDCl3) δ
3
1
2
3
250; H NMR (400 MHz, CDCl3) δ 7.12 (dd, 1H, JPH ) 39 Hz, JHH
)
8 Hz, PdCH), 3.21 (t, 2H, 3JHH ) 7 Hz, CH2Br), 1.76 (m, 2H, CH2), 1.66
(m, 2H, PdCCH2). Z-6: 31P{1H} NMR (162 MHz, CDCl3) δ 232; 1H NMR
(400 MHz, CDCl3) δ 6.57 (dd, 1H, 2JPH ) 38 Hz, 3JHH ) 11 Hz, PdCH),
0.85 (m, 1H, CH), 0.69 (m, 2H, CHH), 0.48 (m, 2H, CHH); 13C{1H} NMR
1
2
(101 MHz, CDCl3) δ 177.7 (d, JPC ) 43 Hz, PdC), 18.3 (d, JPC ) 21
Hz, CH), 10.6 (d, JPC ) 7 Hz, CH2). Z-10: 31P{1H} NMR (162 MHz,
3
1
3
CDCl3) δ 247; H NMR (400 MHz, CDCl3) δ 3.48 (t, 2H, JHH ) 7 Hz,
3
3
a Reagents and conditions: (a) W(CO)5(thf), rt. (b) LiAlH4, THF,
0 °C.
CH2Br), 2.91 (dt, 2H, JPH ) 21 Hz, JHH ) 7 Hz, PdCCH2), 1.99 (quin,
2H, JHH ) 7 Hz, CH2), 1.85 (quin, 2H, JHH ) 7 Hz, CH2). 11: 31P{1H}
3
3
1
NMR (162 MHz, CDCl3) δ 76; H NMR (400 MHz, CDCl3) δ 3.03 (m,
2H, CH2), 2.96 (m, 2H, CH2), 1.92 (m, 2H, CH2); 13C{1H} NMR (101
1
2
MHz, CDCl3) δ 229.4 (d, JPC ) 24 Hz, PdC), 122.1 (d, JPC ) 14 Hz,
PdCdC), 31.2 (d, 3JPC ) 15 Hz, CH2), 17.4 (s, CH2). 12: 31P{1H} NMR
(162 MHz, CDCl3) δ 66; 1H NMR (400 MHz, CDCl3) δ 5.68 (dt, 1H, 2JPH
) 27 Hz, 3JHH ) 8 Hz, dCH), 3.35 (t, 2H, 3JHH ) 7 Hz, CH2Br), 1.99 (m,
was confirmed by X-ray crystallographic analysis as shown
in Figure 1.17 The C1-C2 distance is shorter whereas the
P-C1 distance is slightly longer than the corresponding data
for [Mes*PdCdCPh2][W(CO)5] [CdC 1.311(10), PdC
1.632(7) Å].18 On the other hand, the C2-C3 and C3-C4
distances in 7 are elongated compared to the proximal bonds
2H, PdCCH2), 1.96 (quin, 2H, JHH ) 7 Hz, CH2); 13C{1H} NMR (101
3
1
2
MHz, CDCl3) δ 239.3 (d, JPC ) 27 Hz, PdC), 109.2 (d, JPC ) 13 Hz,
PdCdC), 33.1 (s, CH2Br), 32.7 (d, 4JPC ) 2 Hz, CH2), 27.8 (d, 3JPC ) 13
Hz, PdCCH2).
(11) 3: Colorless crystals, mp 85-86 °C dec; 31P{1H} NMR (162 MHz,
CDCl3) δ 70; 1H NMR (400 MHz, CDCl3) δ 1.74 (m, 2H, CHH), 1.69 (m,
2H, CHH); 13C{1H} NMR (101 MHz, CDCl3) δ 221.9 (d, JPC ) 26 Hz,
1
2
3
PdCdC), 94.5 (d, JPC ) 14 Hz, PdCdC), 11.0 (d, JPC ) 7 Hz, CH2);
UV (hexanes) λmax (log ꢀ) 210 (4.71), 224 (4.63), 263 (3.95), 308 (sh, 3.34).
(12) Etemad-Moghadam, G.; Tachon, C.; Gougyou, M.; Koenig, M.
Tetrahedron Lett. 1991, 32, 3687.
(15) (a) Ito, S.; Kimura, S.; Yoshifuji, M. Chem. Lett. 2002, 708. (b)
Ito, S.; Kimura, S.; Yoshifuji, M. Bull. Chem. Soc. Jpn. 2003, 76, 405.
(16) 7: Orange crystals, mp 122-124 °C.; 31P{1H} NMR (162 MHz,
CDCl3) δ 40 (1JPW ) 265 Hz); 1H NMR (400 MHz, CDCl3) δ 1.96 (m,
2H, CHH), 1.85 (m, 2H, CHH); 13C{1H} NMR (101 MHz, CDCl3) δ 223.2
(d, 1JPC ) 94 Hz, PdCdC), 200.5 (d, 2JPC ) 34 Hz, COax), 197.5 (d, 2JPC
) 10 Hz, COeq), 95.2 (d, 2JPC ) 11 Hz, PdCdC), 12.0 (d, 3JPC ) 15 Hz,
CH2); IR (KBr) ν 2071, 1955, 1930 cm-1. Anal. Calcd for C27H33O5PW:
C, 49.71; H, 5.10. Found: C, 49.73; H, 5.04.
(13) Ma¨rkl, G.; Reitinger, S. Tetrahedron Lett. 1988, 29, 463.
(14) (a) de Meijere, A. Chem. Ber. 1974, 107, 1684. (b) de Meijere, A.;
Jaekel, F.; Simon, A.; Borrmann, H.; Ko¨hler, J.; Johnels, D.; Scott, L. T. J.
Am. Chem. Soc. 1991, 113, 3935. (c) Bader, R. F.; Slee, T. S.; Cremer, D.;
Kraka, E. J. Am. Chem. Soc. 1983, 105, 5061.
1112
Org. Lett., Vol. 5, No. 7, 2003