C O M M U N I C A T I O N S
Scheme 1
goal of further exploiting the ability of 1 to serve as a powerful
two-electron reductant, are currently underway.
Acknowledgment. We thank the National Science Foundation
(CHE-9988806) for financial support. The authors also thank P. J.
Chirik for stimulating our interest in the N-neopentyl ligand. J.S.F.
thanks F. H. Stephens for a generous gift of PMo(N[iPr]Ar)3 and
W. M. Davis and W. Bu for assistance with X-ray crystallography.
Supporting Information Available: Full experimental and spec-
troscopic details for all new compounds and X-ray structural data for
complexes 1 and 5-12 (PDF and CIF). This material is available free
Figure 2. ORTEP diagram of 10 with 30% probability ellipsoids.
References
equiv of mesitylnitrile (MesCN, Mes ) 2,4,6-Me3C6H2) leads
exclusively to the η2-nitrile complex (η2-MesCN)Nb(N[Np]Ar)3
(11), again demonstrating the accessibility of three-coordinate 2.
Crystallographic characterization confirmed the formulation of 11
as an η2-nitrile complex possessing an elongated nitrile N-C bond
of 1.258(4) Å, consistent with significant π-back-donation from a
reducing metal center.15
In contrast, when 1 is treated with stoichiometric tert-butyl nitrile
(tBuCN), sole formation of the nitrile insertion product 12 is
obtained in which the niobaziridine ring remains intact. Likewise,
treatment of 1 with benzaldehyde (PhCHO) leads exclusively to
the benzyloxide complex 13, highlighting the divergent reactivity
accessible to the niobaziridine-hydride functional group. Indeed,
insertion chemistry of this type has been encountered previously
upon borane abstraction of our BH3 adduct in the presence of
benzophenone.7 Extended heating of complexes 12 and 13 did not
produce η2-bound tautomers analogous to 11,16 an observation
lending credence to the suggestion that dual pathways of reactivity
are available to 1 depending on the substrate employed.
In conclusion, hints from the literature have suggested that the
niobaziridine-hydride functional group is capable of tautomeriza-
tion and subsequent small molecule activation chemistry,6 with the
present work confirming this hypothesis. However, and interest-
ingly, no reaction of 1 with dinitrogen has yet been observed under
ambient conditions. Whereas the molybdaziridine-hydride func-
tionality has been shown conclusively to resist insertion into its
Mo-H bond,5 it is now shown for niobium that insertion pathways
are accessible upon addition of certain unsaturated substrates.
Investigations into the factors governing this dichotomy, with the
(1) (a)Yu, J. S.; Fanwick, P. E.; Rothwell, I. P J. Am. Chem. Soc. 1990, 112,
8171. (b) Yu, J. S.; Felter, L.; Potyen, M. C.; Clark, J. R.; Visciglio, V.
M.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1996, 15, 4443.
(2) Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkovsky, E. B. J.
Am. Chem. Soc. 1997, 119, 247.
(3) (a) Veige, A. S.; Kleckley, T. S.; Chamberlin, R. M.; Neithamer, D. R.;
Lee, C. E.; Wolczanski, P. T.; Lobkovsky, E. B.; Glassey, W. V. J.
Organomet. Chem. 1999, 591, 194. (b) Veige, A. S.; Slaughter, L. M.;
Wolczanski, P. T.; Matsunaga, N.; Decker, S. A.; Cundari, T. R. J. Am.
Chem. Soc. 2001, 123, 6419.
(4) Viege, A. S.; Wolczanski, P. T.; Lobkovsky, E. B. Angew. Chem., Int.
Ed. 2001, 40, 3629.
(5) Tsai, Y.-C.; Johnson, M. J. A.; Mindiola, D. J.; Cummins, C. C. J. Am.
Chem. Soc. 1999, 121, 10426.
(6) Berno, P.; Gamboratta, S. Organometallics 1995, 14, 2159.
(7) Mindiola, D. J.; Cummins, C. C. Organometallics 2001, 20, 3626.
(8) We attribute the low isolated yield of 1 to its high lipophilicity.
(9) Such downfield shifts are typical for high valent early T.M. hydride
complexes, and the broadness of the signal can be attributed to coupling
to the quadrupolar Nb nucleus. For instance, see: (a)Templeton, J. C.;
Craig, P. C.; Pregosin, P. S.; Ruegger, H. Magn. Reson. Chem. 1993, 31,
58. (b) Besescker, C. J.; Klemperer, W. G.; Maltbie, D. J.; Write, D. A.
Inorg. Chem. 1985, 24, 1027.
(10) Parkin, G. Prog. Inorg. Chem. 1998, 47, 1.
(11) (a) Woo, L. K. Chem. ReV. 1993, 93, 1125. (b) Johnson, M. J. A.; Lee,
P. M.; Odom, A. L.; Davis, W. M.; Cummins, C. C. Angew. Chem., Int.
Ed. Engl. 1997, 36, 87.
(12) (a) Cherry, J.-P. F.; Stephens, F. H.; Johnson, M. J. A.; Diaconescu, P.
L.; Cummins, C. C. Inorg. Chem. 2001, 40, 6820. (b) Laplaza, C. E.;
Davis, W. M.; Cummins, C. C. Angew. Chem., Int. Ed. Engl. 1995, 34,
2042.
(13) (a) Scherer, O. J. Acc. Chem. Res. 1999, 32, 751. (b) Fermin, M. C.; Ho,
J.; Stephan, D. W. Organometallics 1995, 14, 4247.
(14) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.;
Butterworth-Heinemann: Oxford, 1997; Chapter 11-12.
(15) Etienne, M.; Cafagna, C.; Lorente, P.; Mathieu, R.; de Muontauzon, P. J.
Organometallics 1999, 18, 3075 and references therein.
(16) Thermolysis of 12 does proceed cleanly to a new cyclized product which
will be the focus of an upcoming publication. Furthermore, complex 11
does not rearrange to an analogue of 12 when heated (C6D6, 100 °C, 3
d).
JA028446Y
9
J. AM. CHEM. SOC. VOL. 125, NO. 14, 2003 4021