Communication
ChemComm
This work was supported by the National Natural Science
Foundation of China (21471032, 21771037, 21673038 and
21805033) and the Natural Science Foundation of Jiangsu
Province (JSNSF) (BK20170659).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 J. Y. Liu, S. Y. Zhang, Y. Zeng, X. Shu, Z. Y. Du, C. T. He, W. X. Zhang
and X. M. Chen, Angew. Chem., 2018, 130, 8164–8168.
2 P. Meng, Q. Zhang, Y. Wu, Z. Tan, G. Cheng, X. Wu and R. Zheng,
Adv. Funct. Mater., 2017, 27, 1701136.
3 W. Zhang, H.-Y. Ye, R. Graf, H. W. Spiess, Y.-F. Yao, R.-Q. Zhu and
R.-G. Xiong, J. Am. Chem. Soc., 2013, 135, 5230–5233.
4 T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S. Noro, H. Takahashi,
R. Kumai, Y. Tokura and T. Nakamura, Nat. Mater., 2009, 8, 342–347.
5 C. Shi, X.-B. Han and W. Zhang, Coord. Chem. Rev., 2017, DOI:
10.1016/j.ccr.2017.09.020.
Fig. 4 Temperature dependence of the real part of the dielectric constant
of 2 (a), 3 (b), 4 (c) and 5 (d).
6.2 at 358 K to 18.2 at 367 K, that is, it undergoes a 2.9-fold
increase after the phase transition. For 3–5, the changes of e0
near Ttr are 4.2, 3.2 and 2.8 times, respectively. Such large
changes are closely associated with the severe structural
changes during the phase transitions. The temperature-
dependent e0 and dielectric loss (tan d = e00/e0) of 2–5 at 100
and 1000 kHz are depicted in Fig. S9 (ESI†). It can be seen that
the phase transition temperatures almost show no change
under different frequencies, i.e., no relaxation in the measured
frequency range, manifesting the fast motions of dipoles.24
Additionally, the e0-switching of 5 exhibits a high repeatability
6 Y.-Z. Tang, B. Wang, H.-T. Zhou, S.-P. Chen, Y.-H. Tan, C.-F. Wang,
C. S. Yang and H.-R. Wen, Inorg. Chem., 2018, 57, 1196–1202.
7 X. Zhang, X.-D. Shao, S.-C. Li, Y. Cai, Y.-F. Yao, R.-G. Xiong and
W. Zhang, Chem. Commun., 2015, 51, 4568–4571.
8 H.-Y. Ye, Y.-Y. Tang, P.-F. Li, W.-Q. Liao, J.-X. Gao, X.-N. Hua, H. Cai,
P.-P. Shi, Y.-M. You and R.-G. Xiong, Science, 2018, 361, 151–155.
9 K. Gesi, Ferroelectrics, 1992, 137, 209–223.
10 Y.-Y. Tang, P.-F. Li, W.-Q. Liao, P.-P. Shi, Y.-M. You and R.-G. Xiong,
J. Am. Chem. Soc., 2018, 140, 8051–8059.
11 K. Tao, Z. Wu, S. Han, J. Zhang, C. Ji, Y. Wang, W. Zhang, J. Luo and
Z. Sun, J. Mater. Chem. C, 2018, 6, 4150–4155.
12 Z. Sun, X. Yi, K. Tao, C. Ji, X. Liu, L. Li, S. Han, A. Zheng, M. Hong
and J. Luo, Angew. Chem., Int. Ed., 2018, 57, 9833–9837.
13 H. Rager and A. Weiss, Ber. Bunsen-Ges., 1978, 82, 535–542.
with at least six cycles (Fig. S10, ESI†). And the different 14 K. Tanaka, T. Shimada, Y. Nishihata and A. Sawada, J. Phys. Soc. Jpn.,
1995, 64, 146–154.
15 T. Khan, M. A. Asghar, Z. Sun, A. Zeb, C. Ji and J. Luo, J. Mater. Chem.
electrode (Ag or C) and electrode area have little effect on the
dielectric switching of 5 (Fig. S11, ESI†).
C, 2017, 5, 2865–2870.
In conclusion, by reducing the molecular symmetry of the 16 Y. Zhou, T. Chen, Z. Sun, S. Zhang, C. Ji, C. Song and J. Luo, Chem. –
Asian J., 2015, 10, 247–251.
17 S. Horiuchi and Y. Tokura, Nat. Mater., 2008, 7, 357.
18 V. Jornet-Molla, Y. Duan, C. Gimenez-Saiz, Y.-Y. Tang, P.-F. Li, F. M.
tetramethylphosphonium cations, four high-Ttr organic dielec-
tric switches are successfully obtained. The high Ttr will facil-
itate the practical utilization of these materials. The structural
phase transitions and switchable dielectric behaviours of this
series of compounds are supposed to rely on the order–disorder
transitions of the cations and the concomitant displacement
of both cations and anions. Meanwhile, (2-hydroxy-ethyl)-
trimethyl-phosphonium picrate exhibits switchable SHG beha-
viour. This work provides a new way to design high-temperature
phase transition materials by the symmetry reduction of
spherical moieties, and will promote the exploration and con-
struction of switchable materials.
Romero and R.-G. Xiong, Angew. Chem., Int. Ed., 2017, 56, 14052–14056.
19 G. Liu, J. Liu, Y. Liu and X. Tao, J. Am. Chem. Soc., 2014, 136,
590–593.
20 P.-F. Li, Y.-Y. Tang, Z.-X. Wang, H.-Y. Ye, Y.-M. You and R.-G. Xiong,
Nat. Commun., 2016, 7, 13635.
21 P.-P. Shi, Y.-Y. Tang, P.-F. Li, W.-Q. Liao, Z.-X. Wang, Q. Ye and R.-G.
Xiong, Chem. Soc. Rev., 2016, 45, 3811–3827.
22 Y.-L. Wei, J. Jing, C. Shi, H.-Y. Ye, Z.-X. Wang and Y. Zhang, Chem.
Commun., 2018, 54, 8076–8079.
23 Y.-Z. Tang, Z.-F. Gu, J.-B. Xiong, J.-X. Gao, Y. Liu, B. Wang, Y.-H. Tan
and Q. Xu, Chem. Mater., 2016, 28, 4476–4482.
24 Z.-Y. Du, Y.-Z. Sun, S.-L. Chen, B. Huang, Y.-J. Su, T.-T. Xu, W.-X.
Zhang and X.-M. Chen, Chem. Commun., 2015, 51, 15641–15644.
13114 | Chem. Commun., 2018, 54, 13111--13114
This journal is ©The Royal Society of Chemistry 2018