Table 7 Second-order rate constants for the oxidation of X–C6H4–S–
CH2COOH by NCS at 35 ЊC. [Ar–S–CH2COOH] = 0.02 M. [HClO4] =
0.001 M. [NCS] = 0.001 M. [I] = 0.02 M
Difference in reactivity of MPS, DPS and PMAA
Since the kinetics of aryl methyl sulfides, diaryl sulfides and
arylmercaptoacetic acids have been measured in different
solvent mixtures, a complete discussion for the difference in
behaviour involving all the substrates is not possible. However,
it is observed that the second-order rate constants for the NCS
Solvent: 75% acetonitrile–25% water (v/v)
X
102k2/MϪ1 sϪ1
oxidation of MPS and DPS are 15.8 × 10Ϫ2
M
Ϫ1sϪ1 (in 95%
Ϫ1sϪ1 (in 90 %
1
2
3
4
5
6
7
8
9
H
6.10 0.10
65.1 0.77
18.0 0.23
18.1 0.28
18.5 0.25
3.86 0.05
1.29 0.03
1.14 0.03
0.085 0.01
9.78 0.18
4.27 0.10
0.441 0.07
acetonitrile–5% water (v/v) and 5.9 × 10Ϫ4
M
p-OMe
p-Me
p-Et
acetonitrile–10 % water (v/v) respectively at 45 ЊC and at
[HClO4] = 0.001 M and [I] = 0.02 M. The considerable lower
reactivity of DPS may be attributed to a possible steric effect
offered by the additional phenyl group during the attack of the
oxidising species. The observed rate constants for the oxidation
of MPS and PMAA at 35 ЊC and [HClO4] = 0.001 M and [I] =
p-Pri
p-F
p-Cl
p-Br
p-NO2
m-Me
m-OMe
m-Cl
Ϫ2
0.02 M in 95 % acetonitrile–5 % water (v/v) are 8. 45 × 10
10
11
12
M
Ϫ1 sϪ1 and 1.67 × 10Ϫ3 MϪ1 sϪ1 respectively. The lower rate of
PMAA is not unexpected as the carboxyl group is electron-
attracting, the availability of electron density on the sulfur atom
in this substrate is somewhat reduced compared to MPS.
References
1 C. A. Bunton and N. D. Gillitt, J. Phys. Org. Chem., 2002, 15, 29.
2 V. K. Sivasubramanian, M. Ganesan, S. Rajagopal and R. Ramaraj,
J. Org. Chem., 2002, 67, 1506.
3 M. Taki, S. Itoh and S. Fukuzumi, J. Am. Chem. Soc., 2002, 124,
998.
4 D. Thenraja, P. Subramanaiam and C. Srinivasan, Tetrahedron,
2002, 58, 4283.
5
S. Oae, Organic Sulfur Chemistry: Structure and Mechanism,
CRC Press, Boca Raton, FL, 1991.
6 R. Sevvel, S. Rajagopal, C. Srinivasan, N. I. Alhaji and
A. Chellamani, J. Org. Chem., 2000, 65, 3334.
7 (a) C. Srinivasan, P. Kuthalingam and N. Arumugam, J. Chem. Soc.,
Perkin Trans. 2, 1980, 170; (b) C. Srinivasan, P. Kuthalingam
and N. Arumugam, Int. J. Chem. Kinet., 1982, 14, 1139;
(c) C. Srinivasan, P. Kuthalingam and N. Arumugam, Can. J. Chem.,
1978, 56, 3043.
8 C. Srinivasan, A. Chellamani and P. Kuthalingam, J. Org. Chem.,
1982, 47, 428.
9 C. Srinivasan, A. Chellamani and S. Rajagopal, J. Org. Chem., 1985,
50, 1201.
10 C. Srinivasan, S. Rajagopal and A. Chellamani, J. Chem. Soc.,
Perkin Trans. 2, 1990, 1839.
11 C. Srinivasan and P. Subramaniam, J. Chem. Soc., Perkin Trans. 2,
1990, 1061.
12 R. Harville and S. F. Reed Jr., J. Org. Chem., 1968, 33, 3976.
13 V. Baliah and M. Uma, Tetrahedron, 1963, 19, 455.
14 C. Srinivasan and K. Pitchumani, Indian J. Chem., Sect. A, 1985, 17,
162.
15 D. D. Perrin, A. L. F. Armargo and D. R. Perrin, Purification of
Laboratory Chemicals, Pergamon Press, New York, 1980.
16 U. Miotti, G. Modena and L. Seda, J. Chem. Soc., B, 1970, 802.
17 V. Thiagarajan and N. Venkatasubramanian, Can. J. Chem., 1967,
49, 694.
18 (a) J. Mukherjee and K. K. Banerji, J. Org. Chem., 1981, 46, 2323;
(b) V. Sharma and K. K. Banerji, J. Chem. Res., 1985, (S) 340, ((M)
3551).
Scheme 2
19 F. Ruff and A. Kucsmann, J. Chem. Soc., Perkin Trans. 2, 1975, 509.
20 P. R. Wells, Chem. Rev., 1963, 63, 171.
21 R. W. Taft, Jr., in Steric Effects in Organic Chemistry, ed. M. S.
Newmann, Wiley, New York, 1956, p. 660.
22 L. L. Schaleger and F. A. Long, Adv. Phys. Org. Chem., 1963, 1, 1.
23 J. E. Leffler, J. Org. Chem., 1955, 20, 1202.
24 J. E. Leffler, J. Chem. Phys., 1955, 23, 2199.
25 R. C. Petersen, J. Org. Chem., 1964, 29, 3133.
26 C. D. Ritchie and W. F. Sager, Prog. Phys. Org. Chem., 1964, 2, 323.
27 R. C. Petersen, J. H. Markgraf and S. D. Ross, J. Am. Chem. Soc.,
1961, 83, 3819.
28 (a) O. Exner, Nature, 1964, 201, 488; (b), Coll. Czech. Chem.
Commun., 1964, 20, 1004.
29 C. Srinivasan and A. Chellamani, React. Kinet. Catal. Lett., 1981,
18, 187.
30 D. G. Peters, J. M. Hayes and G. M. Hieftje, Chemical Separations
and Measurements-Theory and Practice of Analytical Chemistry,
Saunders Golden Series: London, 1974, p. 32.
active species of NCS. In the bromination of anisole by
N-bromosuccinimide (NBS),29 it has been concluded that NBS
is the oxidising species, since the rate decreases with increasing
[Hϩ].
The influence of substituents on the rate of oxidation has
been investigated by employing, several substituted phenyl-
mercaptoacetic acids. It is observed that the electron-releasing
groups in the phenyl ring favour the reaction (Table 7) and
electron-withdrawing substitutents retard the rate. A satisfac-
tory linear free-energy relationship is found between logk2 and
σ values (r = 0.986, s = 0.14, n = 12) with the reaction constant
(ρ) value of Ϫ2.73 0.14 at 35 ЊC. The negative ρ value indi-
cates an electron-deficient transition state and this value is
analogous to the one observed for the oxidation of aryl methyl
and diaryl sulfides (vide supra).
J. Chem. Soc., Perkin Trans. 2, 2002, 2125–2129
2129