3
Acknowledgements
and Mn(acac)3 (0.2 mmol, 0.2 equiv.) in NMP (2 mL containing
90 µL of H2O) stirring at 60 oC for 6 h unless otherwise noted.
This work was supported from the National Natural Science
Foundation of China (No. 81273356 and 81473074), National
Science & Technology Major Projects for "Major New Drugs
Innovation and Development" of China (2014ZX09304002-007)
and Arthritis & Chronic Pain Research Institute, USA to Y. Yu;
National Natural Science Foundation of China (No. 81402778) to
W. Chen.
To gain insight into the reaction mechanism for the formation
of 3a, control experiments were subsequently carried out
(Scheme 2). When TEMPO (2, 2, 6, 6-tetramethyl-1-
piperidinyloxy), a widely used radical scavenger, was added into
the reaction system, the formation of 3a was completely inhibited.
When the reaction was performed under N2, the desired product
3a was obtained. While product 3a failed to afford in anhydrous
NMP. This findings imply that the reaction involves a radical
process and the keto group comes from water in solvents.
Supporting Information
Supplementary data (Experimental procedures, characterization
1
data, and copies of H and 13C NMR spectra for all products)
associated with this article can be found in the online version, at
Note
*Corresponding authors: E-mail: wentengchen@zju.edu.cn (for
W. Chen); E-mail: yyu@zju.edu.cn (for Y. Yu)
References
1. (a) Uraguchi, D.; Kinoshita, N.; Kizu, T. J. Am. Chem. Soc.
2015, 137, 13768. (b) Du, T.; Du, F.; Ning, Y.; Peng, Y.
Org. Lett. 2015, 17, 1308. (c) Yu, P.; Lin, J. S.; Li, L.
Angew. Chem. Int. Ed. 2014, 53, 11890. (d) Alexandre, F.;
Amador, A.; Bot, S.; Caillet, C.; Convard, T.; Jakubik, J.;
Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Roland, A.;
Seifer, M.; Standring, D.; Storer, R.; Dousson, C. B. J. Med.
Chem. 2011, 54, 392. (e) Queffelec, C.; Petit, M.; Janvier,
P.; Knight, D. A.; Bujoli, B. Chem. Rev. 2012, 112, 3777.
Scheme 2. Control reaction
Based on these observations,
mechanism for the formation of
Scheme 3. The reaction might be initiated by the addition of
phosphine oxide radical , generated by one-electron
oxidation of by Mn (III), to vinyl azide , affording iminyl
a
possible reaction
2. (a) Wadsworth Jr, W. S.; Emmons, W. D. J. Am. Chem. Soc.
1961, 83, 1733. (b) Boutagy, J.; Thomas, R.; Chem. Rev.
1974, 74, 87. (c) Boesen, T.; Fox, D. J.; Galloway, W.;
Pedersen, D. S.; Tyzack, C. R.; Warren, S. Org. Biomol.
Chem. 2005, 3, 630.
3
or 4 is proposed in
I
2
1
radical II with elimination of dinitrogen. Consecutively, the
generated iminyl radical II was reduced by the resulting Mn
(II) species and subsequently protonated to afford imine
intermediate IV and regenerated Mn(III) species. The
hydrolysis of IV would give the desired β-keto phosphonate
3. (a) González-Calderón, D.; Fuentes-Benítes, A.; Díaz-
Torres, E.; González-González, C. A.; González-Romero,
C. Eur. J. Org. Chem. 2016, 668. (b) Khalladi, K.; Touil, S.
Phosphorus. Sulfur 2013, 188, 711. (c) Reeves, J. T.; Song,
J. J.; Tan, Z.; Lee, H.; Yee, N. K.; Senanayake, C. H. Org.
Lett. 2007, 9, 1875.
3
or β-keto phosphine oxides 4.
4. (a) Son, S. M.; Le, H. K. J. Org. Chem. 2014, 79, 2666. (b)
Tao, X.; Li, W.; Li, X.; Xie, X.; Zhang, Z. Org. Lett., 2013,
15, 72.
5. (a) Chen, X.; Li, X.; Chen, X.-L.; Qu, L.-B.; Chen, J.-Y.;
Sun, K.; Liu, Z.-D.; Bi, W.-Z.; Xia, Y.-Y.; Wu, H.-T.; Zhao,
Y.-F. Chem. Commun. 2015, 51, 3846; Zhou, M.; (b) Chen,
M.; Zhou, Y.; Yang, K.; Su, J.; Du, J.; Song, Q. Org. Lett.
2015, 17, 1786. (c) Yi, N.; Wang, R.; Zou, H.; He, W.; Fu,
W.; He, W. J. Org. Chem. 2015, 80, 5023; (d) Zhang, P.;
Zhang, L.; Gao, Y.; Xu, J.; Fang, H.; Tang, G.; Zhao, Y.
Chem. Commun. 2015, 51, 7839; (e) Wei, W.; Ji, J.-X.
Angew. Chem. Int. Ed. 2011, 50, 9097. (f) Zhang, G.-Y.; Li,
C.-K.; Li, D.-P.; Zeng, R.-S.; Shoberu, A.; Zou, J.-P.
Tetrahedron, 2016, 72, 2972. (g) Xu, J.; Li, X.; Gao, Y.;
Zhang, L.; Chen, W.; Fang, H.; Tang, G.; Zhao, Y. Chem.
Commun. 2015, 51, 11240; (h) Mochizuki, T.; Hayakawa,
S.; Narasaka, K. Bull. Chem. Soc. Jpn. 1996, 69, 2317. (i)
Luo, K.; Chen, Y.-Z.; Yang, W.-C.; Zhu, J.; Wu, L. Org.
Lett. 2016, 18, 452; (j) Quint, V.; Morlet-Savary, F.; Lohier,
J.-F.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S. J. J. Am.
Chem. Soc. 2016, 138, 7436; (k) Zhang, P.; Gao, Y.; Zhang,
L.; Li, Z.; Liu, Y.; Tang, G.; Zhao, Y. Adv. Syn. Catal.
2016, 358, 138; (l) Gao, Y.; Lu, G.; Zhang, P.; Zhang, L.;
Scheme 3. A possible reaction mechanism
3. Conclusion
In summary, we have developed Mn (III)-catalyzed radical
phosphorylation of vinyl azides using phosphine oxides. Further
investigation of the reaction mechanism showed that this reaction
probably proceed through an oxidant radical pathway. Moreover,
the reaction process features an operation with functional-group
tolerance and high yields.