Journal of the American Chemical Society
Page 4 of 5
(11) All attempts to use more highly substituted alkynes or diketones
Notes
in this reaction were unsuccessful, and extension of the basic re-
action design for the establishment of cycloheptenes was not suc-
cessful.
1
2
3
The authors declare no competing financial interest.
ACKNOWLEDGMENT:
(12) See: Eisch, J. J.; Adeosun, A. A.; Gitua, J. N. Eur. J. Org. Chem.
2003, 4721-4727.
4
5
6
7
8
9
We gratefully acknowledge financial support of this work by the
National Institutes of Health – NIGMS (GM080266 and
GM124004). The authors also thank Skyler Svendsen for per-
forming an early example of the alkyne coupling reaction to a γ-
keto aldehyde.
(13)An intramolecular Ti-mediated alkyne–ketone cyclization has
been reported: Morlender-Vais, N.; Solodovnikova, N.; Marek, I.
Chem. Commun. 2000, 1849-1850.
(14) (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102,
5974-5976. For a recent examples of employing a metal alkoxide
intermediate in directed epoxidation by the addition of Ti(Oi-Pr)4
and t-BuOOH, see: (b) Kelly, A. R.; Lurain, A. E.; Walsh, P. J. J.
Am. Chem. Soc. 2005, 127, 14668-14674. (c) Kim, J. G.; Waltz,
K. M.; Garcia, I. F.; Kwiatkowski, D.; Walsh, P. J. J. Am. Chem.
Soc. 2004, 126, 12580-12585.
(15) The increase in isolated yield observed for product 20, in com-
parison to 17, likely reflects the increased stability of the epoxide
product (in comparison to the ene-diol) to the chromatographic
conditions employed for purification of the crude reaction mix-
ture.
(16) For a recent review on the use of metallacycle-mediated cross-
coupling chemistry in natural product total synthesis, see:
O’Rourke, N. F.; Kier, M. J.; Micalizio, G. C. Tetrahedron 2016,
72, 7093-7123.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
SUPPORTING INFORMATION PARAGRAPH:
Experimental procedures and tabulated spectroscopic data for new
compounds and crystollagrophic data for compound 22 (PDF and
CIF) are available free of charge via the Internet at
REFERENCES:
(1) (a) Wender, P. A. Nat. Prod. Rep. 2014, 31, 433-440. (b) Ihihara,
Y.; Baran, P. S. Synlett 2010, 1733-1745. (c) Burns, N. Z.; Baran,
P. S.; Hoffmann, R. W. Angew. Chem. Int. Ed. 2009, 48, 2854-
2867. (d) Chen, K.; Baran, P. S. Nature 2009, 459, 824-828.
(2) For recent reviews, see: (a) Hartwig, J. F. J. Am. Chem. Soc. 2016,
138, 2-24. (b) Qiu, Y.; Gao, S. Nat. Prod. Rep. 2016, 33, 562-581.
(c) Nakamura, A.; Nakada, M. Synthesis 2013, 45, 1421-1451. (d)
Chen, D. Y.-K.; Youn, S. W. Chem. Eur. J. 2012, 18, 9452-9474.
(e) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40,
1976-1991.
(3) (a) Akasaka, H.; Shione, Y.; Murayama, T.; Ikeda, M. Helv. Chim.
Acta 2005, 88, 2944-2950. (b) Chai, X.-Y.; Bai, C.-C.; Shi, H.-
M.; Xu, Z.-R.; Ren, H.-Y.; Li, F.-F.; Lu, Y.-N.; Song, Y.-L., Tu,
P.-F. Tetrahedron 2008, 64, 5743-5747. (c) Kelly, R. B.; Whit-
tingham, D. J.; Wiesner, K. Can. J. Chem. 1951, 29, 905-910. (d)
Srivastava, S. N.; Przybylska, M. Can. J. Chem. 1967, 46, 795-
797. For an impressive synthetic route to ryanodol and ryanodine,
see: (e) Chuang, K. V.; Xu, C.; Reisman, S. E. Science, 2016,
353, 912-915, and (f) Xu, C.; Han, A.; Virgil, S. C.; Reisman, S.
E. ACS Central Science, 2017, 3, 278-282.
(4) For an example of a Ti–ethylene complex reacting with an alde-
hyde, see: (a) Cohen, S. A.; Bercaw, J. E. Organometallics 1985,
4, 1006-1014. For an example of regioselective coupling of a Ti–
alkyne complex to an aldehyde, see: (b) Harada, K.; Urabe, H.;
Sato, F. Tetrahedron Lett. 1995, 36, 3203-3206.
(5) For a related reaction design that does not deliver stereodefined
products, see the following that describe Nb- and Ta-mediated en-
tries to substituted naphthols: (a) Hartung, J. B.; Pedersen, S. F. J.
Am. Chem. Soc. 1989, 111, 5468-5469. (b) Kataoka, Y.; Miyai, J.;
Tezuka, M.; Takai, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett.
1990, 369-372.
(6) For a recent review of the Kulinkovich reaction, see: (a) Wolan,
A.; Six, Y. Tetrahedron 2010, 66, 15-61. For the titanacycle-to-
carbocycle relay reaction, see: (b) Urabe, H.; Narita, M.; Sato, F.
Angew. Chem. Int. Ed. 1999, 38, 3516-3518.
(7) For previous uses of Ti(Oi-Pr)4 and n-BuLi in metallacycle-
mediated coupling chemistry, see: (a) Tarselli, M. A.; Micalizio,
G. C. Org. Lett. 2009, 11, 4596-4599. (b) Yang, D.; Micalizio, G.
C. J. Am. Chem. Soc. 2011, 133, 9216-9219. (c) Chen, M. Z.; Mi-
calizio, G. C. J. Am. Chem. Soc. 2012, 134, 1352-1356. (d) Jeso,
V.; Aquino, C.; Cheng, X.; Mizoguchi, H. Nakashige, M.; Mical-
izio, G. C. J. Am. Chem. Soc. 2014, 136, 8209-8212. (e) Rassidin,
V. A.; Six, Y. Tetrahedron 2014, 70, 787-794. (f) Mizoguchi, H.;
Micalizio, G. C. J. Am. Chem. Soc. 2015, 137, 6624-6628. (g)
Chen, X.; Micalizio, G. C. J. Am. Chem. Soc. 2016, 138, 1150-
1153. (h) Mizoguchi, H.; Micalizio, G. C. Angew. Chem. Int. Ed.
2016, 55, 13099-13103.
(8) It is known that such Ti–alkyne complexes react in a regioselec-
tive manner with aldehydes, where C–C bond formation occurs
distal to the TMS group. For additional information, see ref. 4(b).
(9) While the isolated yields of products for this cyclohexene-forming
annulation hovered around 50%, the dicarbonyl 7 was completely
consumed, and an additional product was routinely identified
where two equivalents of the intermediate Ti–alkyne intermediate
reacted at both carbonyl systems (~20%).
(10) Syn-1,4-diols like those present in these products of annulation
(eqs 2-4) may be accessible from cycloaddition of the parent cy-
clohexadiene with 1O2, followed by reduction; see: Clennan, E. L.;
Pace, A. Tetrahedron 2005, 61, 6665-6691.
ACS Paragon Plus Environment