COMMUNICATIONS
Sumin Lee et al.
c) M. A. Beenen, D. J. Weix, J. A. Ellman, J. Am.
Chem. Soc. 2006, 128, 6304–6305; d) H.-Y. Yang, M.-H.
Xu, Chem. Commun. 2010, 46, 9223–9225; e) Z. Cui,
H.-J. Yu, R.-F. Yang, W.-Y. Gao, C.-G. Feng, G.-Q. Lin,
J. Am. Chem. Soc. 2011, 133, 12394–12397; f) Y. Luo,
A. J. Carnell, H. W. Lam, Angew. Chem. 2012, 124,
6866–6870; Angew. Chem. Int. Ed. 2012, 51, 6762–6766;
g) R. Crampton, S. Woodward, M. Fox, Adv. Synth.
Catal. 2011, 353, 903–906; h) C. S. Marques, A. J.
Burke, ChemCatChem 2011, 3, 635–645.
tions, and amino ester products could subsequently
undergo cyclization to afford b,g-substituted lactams.
The addition reaction proceeded with high enantio-
specificity and stereoretention, providing a good ex-
ample of the competency of alkyl-organometallic
compounds in conjunction with transition metal catal-
ysis.
Experimental Section
[6] a) D. J. Weix, Y. Shi, J. A. Ellman, J. Am. Chem. Soc.
2005, 127, 1092–1093; b) Y. Bolshan, R. A. Batey, Org.
Lett. 2005, 7, 1481–1484; c) V. L. Truong, J. Y. Pfeiffer,
Tetrahedron Lett. 2009, 50, 1633–1635.
General Procedure
A mixture of [Rh(OH)(cod)]2 (2.5 mol%, 2.3 mg), potassi-
um secondary alkyltrifluoroborates (3 or 7) (0.2 mmol) and
N-sulfonylimines (4) (0.3 mmol) was dissolved in anhydrous
toluene (1.4 mL). Distilled H2O (12 mmol, 0.2 mL) was
added to the reaction mixture under a nitrogen atmosphere.
The reaction mixture was stirred at 458C and monitored by
TLC. After 24 h, the reaction mixture was extracted with
ethyl acetate (310 mL). The combined organic layers were
dried over Na2SO4 and concentrated. The product (5 or 8)
was purified by chromatography on silica gel or transformed
to the corresponding lactam.
[7] a) S. Mun, J.-E. Lee, J. Yun, Org. Lett. 2006, 8, 4887–
4889; b) J.-E. Lee, J. Yun, Angew. Chem. 2008, 120,
151–153; Angew. Chem. Int. Ed. 2008, 47, 145–147.
[8] a) E. Vedejs, R. W. Chapman, S. C. Fields, S. Lin, M. R.
Schrimpf, J. Org. Chem. 1995, 60, 3020–3027; b) R. A.
Batey, A. N. Thadani, D. V. Smil, Tetrahedron Lett.
1999, 40, 4289–4292.
[9] a) L. R. Reddy, K. Prasad, M. Prashad, J. Org. Chem.
2012, 77, 6296–6301; b) D. P. Walker, D. G. Wishka, P.
Beagley, G. Turner, N. Solesbury, Synthesis 2011, 1113–
1119.
[10] The relative stereochemistry of addition products 6g
was determined by comparison with NMR data report-
ed in the literature and by NOE experiments on 6k,
a) M. He, J. W. Bode, Org. Lett. 2005, 7, 3131–3134;
b) J. Escalante, M. A. Gonzµlez-Tototzin, Tetrahedron:
Asymmetry 2003, 14, 981–985. The stereochemistry of
other products in Table 2 was assigned by analogy.
[11] a) K. Brak, J. A. Ellman, J. Org. Chem. 2010, 75, 3147–
3150; b) H. Nakagawa, J. C. Rech, R. W. Sindelar, J. A.
Ellman, Org. Lett. 2007, 9, 5155–5157.
Acknowledgements
This research was supported by the Basic Science Research
Program administered through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education,
Science, and Technology (NRF-2013R1A1A2058160).
[12] The enantiospecificity can be calculated using the equa-
tion [% es=(ee of product/ee of starting material)
100], which indicates the degree of conservation of
enantiomeric purity over the course of the reaction:
S. E. Denmark, T. Vogler, Chem. Eur. J. 2009, 15,
11737–11745.
[13] a) S. Lesniak, R. B. Nazarski, B. Pasternak, Tetrahedron
2009, 65, 6364–6369; b) N. K. Yee, Tetrahedron Lett.
1997, 38, 5091–5094.
[14] The absolute configuration of the b-carbon of 6g was
determined as S by comparing its HPLC chromatogram
with that of 6g derived from the known compound. See
ref.[10b] and the Supporting Information for details.
[15] a) D. Noh, H. Chea, J. Ju, J. Yun, Angew. Chem. 2009,
121, 6178–6180; Angew. Chem. Int. Ed. 2009, 48, 6062–
6064; b) D. Noh, S. K. Yoon, J. Won, J. Y. Lee, J. Yun,
Chem. Asian J. 2011, 6, 1967–1969.
[16] The relative stereochemistry of addition product (8a)
was determined by comparison with NMR data report-
ed in the literature after deprotection, J. L. G. Ruano, J.
Alemµn, I. Alonso, A. Parra, V. Marcos, J. Aguirre,
Chem. Eur. J. 2007, 13, 6179–6195.
References
[1] a) M. Sakai, H. Hayashi, N. Miyaura, Organometallics
1997, 16, 4229–4231; b) M. Sakai, M. Ueda, N. Miyaura,
Angew. Chem. 1998, 110, 3475–3477; Angew. Chem. Int.
Ed. 1998, 37, 3279–3281; for a recent review, see: c) P.
Tian, H.-Q. Dong, G.-Q. Lin, ACS Catal. 2012, 2, 95–
119.
[2] a) R. A. Batey, A. N. Thadani, D. V. Smil, Org. Lett.
1999, 1, 1683–1686; b) K. Yoshida, M. Ogasawara, T.
Hayashi, J. Org. Chem. 2003, 68, 1901–1905; c) C. De-
fieber, J.-F. Paquin, S. Serna, E. M. Carreira, Org. Lett.
2004, 6, 3873–3876; d) M. Pucheault, S. Darses, J.-P.
Genet, Chem. Commun. 2005, 4714–4716; e) R. Shinta-
ni, M. Inoue, T. Hayashi, Angew. Chem. 2006, 118,
3431–3434; Angew. Chem. Int. Ed. 2006, 45, 3353–3356.
[3] A. Ros, V. K. Aggarwal, Angew. Chem. 2009, 121,
6407–6410; Angew. Chem. Int. Ed. 2009, 48, 6289–6292.
[4] C. Zhang, J. Yun, Org. Lett. 2013, 15, 3416–3419.
[5] a) R. Shintani, Y.-T. Soh, T. Hayashi, Org. Lett. 2010,
12, 4106–4109; b) R. Shintani, M. Takeda, Y.-T. Soh, T.
Ito, T. Hayashi, Org. Lett. 2011, 13, 2977–2979;
2222
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2015, 357, 2219 – 2222